References
- Nguyen DHD, Park S-H, Tran PL, Kim J-W, Le QT, Boos W, et al. 2019. Characterization of the transglycosylation reaction of 4-α-Glucanotransferase (MalQ) and its role in glycogen breakdown in Escherichia coli. J. Microbiol. Biotechnol. 29: 357-366. https://doi.org/10.4014/jmb.1811.11051
- Jeong D-W, Jeong H-M, Shin Y-J, Woo S-H, Shim J-H. 2019. Properties of recombinant 4-α-glucanotransferase from Bifidobacterium longum subsp. longum JCM 1217 and its application. Food Sci. Biotechnol. 29: 667-674. https://doi.org/10.1007/s10068-019-00707-4
- Takaha T, Smith SM. 1999. The functions of 4-α-glucanotransferases and their use for the production of cyclic glucans. Biotechnol. Genet. Eng. Rev. 16: 257-280. https://doi.org/10.1080/02648725.1999.10647978
- Takaha T, Yanase M, Okada S, Smith SM. 1993. Disproportionating enzyme (4-alpha-glucanotransferase; EC 2.4. 1.25) of potato. Purification, molecular cloning, and potential role in starch metabolism. J. Biol. Chem. 268: 1391-1396. https://doi.org/10.1016/S0021-9258(18)54088-6
- Park J-H, Kim H-J, Kim Y-H, Cha H, Kim Y-W, Kim T-J, et al. 2007. The action mode of Thermus aquaticus YT-1 4-α-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectin. Carbohydr. Polym. 67: 164-173. https://doi.org/10.1016/j.carbpol.2006.05.018
- Lee KY, Kim Y-R, Park KH, Lee HG. 2006. Effects of α-glucanotransferase treatment on the thermo-reversibility and freeze-thaw stability of a rice starch gel. Carbohydr. Polym. 63: 347-354. https://doi.org/10.1016/j.carbpol.2005.08.050
- Terada Y, Fujii K, Takaha T, Okada S. 1999. Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: production of cycloamylose. Appl. Environ. Microbiol. 65: 910-915. https://doi.org/10.1128/aem.65.3.910-915.1999
- Liebl W, Feil R, Gabelsberger J, Kellermann J, Schleifer KH. 1992. Purification and characterization of a novel thermostable 4-α-glucanotransferase of Thermotoga maritima cloned in Escherichia coli. Eur. J. Biochem. 207: 81-88. https://doi.org/10.1111/j.1432-1033.1992.tb17023.x
- Dippel R, Boos W. 2005. The maltodextrin system of Escherichia coli: metabolism and transport. J. Bacteriol. 187: 8322-8331. https://doi.org/10.1128/JB.187.24.8322-8331.2005
- Lim MS, Myung Hee Lee, Jeong Huyn Lee, Hyun-Mok Ju, Na Young Park, Hye Sook Jeong, et al. 2005. Identification and characterization of the Vibrio vulnificus malPQ operon. J. Microbiol. Biotechnol. 15: 616-625.
- Han A-r, Lee Y-j, Wang T, Kim J-W. 2018. Glycogen metabolism in Vibrio vulnificus affected by malP and malQ. Microbiol. Biotchnol. Lett. 46: 29-39. https://doi.org/10.4014/mbl.1801.01002
- Park J-T, Shim J-H, Tran PL, Hong I-H, Yong H-U, Oktavina EF, et al. 2011. Role of maltose enzymes in glycogen synthesis by Escherichia coli. J. Bacteriol. 193: 2517-2526. https://doi.org/10.1128/JB.01238-10
- van der Veen BA, van Alebeek GJW, Uitdehaag JC, Dijkstra BW, Dijkhuizen L. 2000. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms. Eur. J. Biochem. 267: 658-665. https://doi.org/10.1046/j.1432-1327.2000.01031.x
- Tachibana Y, Takaha T, Fujiwara S, Takagi M, Imanaka T. 2000. Acceptor specificity of 4-α-glucanotransferase from Pyrococcus kodakaraensis KOD1, and synthesis of cycloamylose. J. Biosci. Bioeng. 90: 406-409. https://doi.org/10.1016/S1389-1723(01)80009-8
- Yanase M, Takata H, Takaha T, Kuriki T, Smith SM, Okada S. 2002. Cyclization reaction catalyzed by glycogen debranching enzyme (EC 2.4. 1.25/EC 3.2. 1.33) and its potential for cycloamylose production. Appl. Environ. Microbiol. 68: 4233-4239. https://doi.org/10.1128/AEM.68.9.4233-4239.2002
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Werner W, Rey He, Wielinger H. 1970. Properties of a new chromogen for determination of glucose in blood according to god/podmethod. Z. Anal. Chem. Freseniu. 252: 224. https://doi.org/10.1007/BF00546391
- Koizumi K, Sanbe H, Kubota Y, Terada Y, Takaha T. 1999. Isolation and characterization of cyclic α-(1→ 4)-glucans having degrees of polymerization 9-31 and their quantitative analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. J. Chromatogr. A 852: 407-416. https://doi.org/10.1016/S0021-9673(99)00643-3
- Fox JD, Robyt JF. 1991. Miniaturization of three carbohydrate analyses using a microsample plate reader. Anal. Biochem. 195: 93-96. https://doi.org/10.1016/0003-2697(91)90300-I
- Oh MJ, Hua S, Kim BJ, Jeong HN, Jeong SH, Grimm R, et al. 2013. Analytical platform for glycomic characterization of recombinant erythropoietin biotherapeutics and biosimilars by MS. Bioanalysis 5: 545-559. https://doi.org/10.4155/bio.12.327
- Murakami T, Kanai T, Takata H, Kuriki T, Imanaka T. 2006. A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 188: 5915-5924. https://doi.org/10.1128/JB.00390-06
- Sasaki Y, Nomura Y, Sawada S-i, Akiyoshi K. 2010. Polysaccharide nanogel-cyclodextrin system as an artificial chaperone for in vitro protein synthesis of green fluorescent protein. Polymer J. 42: 823-828. https://doi.org/10.1038/pj.2010.73
- Yamaguchi H, Miyazaki M. 2014. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules 4: 235-251. https://doi.org/10.3390/biom4010235
- Gattuso G, Nepogodiev SA, Stoddart JF. 1998. Synthetic cyclic oligosaccharides. Chem. Rev. 98: 1919-1958. https://doi.org/10.1021/cr960133w
- Watanabe H, Nishimoto T, Sonoda T, Kubota M, Chaen H, Fukuda S. 2006. An enzymatically produced novel cyclomaltopentaose cyclized from amylose by an α-(1→ 6)-linkage, cyclo-{→ 6)-α-D-Glcp-(1→ 4)-α-D-Glcp-(1→ 4)-α-D-Glcp-(1→ 4)-α-D-Glcp-(1→ 4)- α-D-Glcp-(1→}. Carbohydr.Res. 341: 957-963. https://doi.org/10.1016/j.carres.2006.02.028