참고문헌
- Romsdahl J, Wang CCC. 2019. Recent advances in the genome mining of Aspergillus secondary metabolites (covering 2012-2018). Medchemcomm. 10: 840-866. https://doi.org/10.1039/C9MD00054B
- Araujo R, Sampaio-Maia B. 2018. Fungal genomes and genotyping. Adv. Appl. Microbiol. 102: 37-81. https://doi.org/10.1016/bs.aambs.2017.10.003
- Sharma KK. 2016. Fungal genome sequencing: basic biology to biotechnology. Crit. Rev. Biotechnol. 36: 743-759. https://doi.org/10.3109/07388551.2015.1015959
- Li W, Yin WB. 2019. Genetic mining of the "dark matter" in fungal natural products. Sci. China Life Sci. 62: 1250-1252. https://doi.org/10.1007/s11427-019-9818-3
- Wang B, Guo F, Dong SH, Zhao H. 2019. Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat. Chem. Biol. 15: 111-114. https://doi.org/10.1038/s41589-018-0187-0
- Keller NP. 2019. Fungal secondary metabolism: regulation, function and drug discovery. Nat. Rev. Microbiol. 17: 167-180. https://doi.org/10.1038/s41579-018-0121-1
- Chiang YM, Oakley CE, Ahuja M, Entwistle R, Schultz A, Chang S-L, et al. 2013. An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. J. Am. Chem. Soc. 135: 7720-7731. https://doi.org/10.1021/ja401945a
- Harvey CJB, Tang M, Schlecht U, Horecka J, Fisher C, Lin H-C, et al. 2018. Hex: a heterologous expression platform for the discovery of fungal natural products. Sci. Adv. 4: eaar5459. https://doi.org/10.1126/sciadv.aar5459
- Chiang YM, Szewczyk E, Davidson AD, Keller N, Oakley BR, Wang CC, et al. 2009. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J. Am. Chem. Soc. 131: 2965- 2970. https://doi.org/10.1021/ja8088185
- Nielsen MT, Nielsen JB, Anyaogu DC, Holm DK, Nielsen KF, Larsen TO, et al. 2013. Heterologous reconstitution of the intact geodin gene cluster in Aspergillus nidulans through a simple and versatile PCR based approach. PLoS One 8: e72871. https://doi.org/10.1371/journal.pone.0072871
- WB Yin, YH Chooi, Smith AR, Cacho RA, Hu Y, White TC, et al. 2013. Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in Aspergillus nidulans. ACS Synth. Biol. 2: 629-634. https://doi.org/10.1021/sb400048b
- Lin TS, Chiang YM, Wang CC. 2016. Biosynthetic pathway of the reduced polyketide product citreoviridin in Aspergillus terreus var. Aureus revealed by heterologous expression in Aspergillus nidulans. Org. Lett. 18: 1366-1369. https://doi.org/10.1021/acs.orglett.6b00299
- Chiang YM, Ahuja M, Oakley CE, Entwistle R, Asokan A, Zutz C, et al. 2016. Development of genetic dereplication strains in Aspergillus nidulans results in the discovery of aspercryptin. Angew. Chem. Int. Ed. Engl. 55: 1662-1665. https://doi.org/10.1002/anie.201507097
- Bok JW, Ye R, Clevenger KD, Mead D, Wagner M, Krerowica A, et al. 2015. Fungal artificial chromosomes for mining of the fungal secondary metabolome. BMC Genomics 16: 343. https://doi.org/10.1186/s12864-015-1561-x
- Kouprina N, Larionov V. 2006. Tar cloning: insights into gene function, long-range haplotypes and genome structure and evolution. Nat. Rev. Genet. 7: 805-812. https://doi.org/10.1038/nrg1943
- Lee NC, Larionov V, Kouprina N. 2015. Highly efficient CRISPR/Cas9-mediated tar cloning of genes and chromosomal loci from complex genomes in yeast. Nucleic Acids Res. 43: e55. https://doi.org/10.1093/nar/gkv112
- Clevenger KD, JW Bok, Ye R, Miley GP, Verdan MH, Velk T, et al. 2017. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat. Chem. Biol. 13: 895-901. https://doi.org/10.1038/nchembio.2408
- Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096. https://doi.org/10.1126/science.1258096
- Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010
- Liu Y, Tao W, Wen S, Li Z, Yang A, Deng Z, et al. 2015. In vitro CRISPR/Cas9 system for efficient targeted DNA editing. mBio 6: e01714-01715.
- Jiang W, Zhao X, Gabrieli T, Lou C, Ebenstein Y, Zhu TF. 2015. Cas9-assisted targeting of chromosome segments catch enables onestep targeted cloning of large gene clusters. Nat. Commun. 6: 8101. https://doi.org/10.1038/ncomms9101
- Wang JW, Wang A, Li K, Wang B, Jin S, Reiser M, et al. 2015. CRISPR/Cas9 nuclease cleavage combined with gibson assembly for seamless cloning. Biotechniques 58: 161-170. https://doi.org/10.2144/000114261
- Zhang C, Lu L. 2017. Precise and efficient in-frame integration of an exogenous gfp tag in Aspergillus fumigatus by a CRISPR system. Methods Mol. Biol. 1625: 249-258. https://doi.org/10.1007/978-1-4939-7104-6_17
- Zhang C, Meng X, Wei X, Lu L. 2016. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet. Biol. 86: 47-57. https://doi.org/10.1016/j.fgb.2015.12.007
- Zhang P, Wang X, Fan A, Zheng Y, Liu X, Wang S, et al. 2017. A cryptic pigment biosynthetic pathway uncovered by heterologous expression is essential for conidial development in pestalotiopsis fici. Mol. Microbiol. 105: 469-483. https://doi.org/10.1111/mmi.13711
- Cacho RA, Jiang W, Chooi YH Walsh CT, Tang Y. 2012. Identification and characterization of the echinocandin B biosynthetic gene cluster from Emericella rugulosa NRRL 11440. J. Am. Chem. Soc. 134: 16781-16790. https://doi.org/10.1021/ja307220z
- Jiang W, Zhu TF. 2016. Targeted isolation and cloning of 100-kb microbial genomic sequences by cas9-assisted targeting of chromosome segments. Nat. Protoc. 11: 960-975. https://doi.org/10.1038/nprot.2016.055
- Xu X, Liu L, Zhang F, Wang W, Ki J, Guo L, et al. 2014. Identification of the first diphenyl ether gene cluster for pestheic acid biosynthesis in plant endophyte pestalotiopsis fici. Chembiochem 15: 284-292. https://doi.org/10.1002/cbic.201300626
- Wu G, Zhou H, Zhang P, Wang W, Li J, Gou L, et al. 2016. Polyketide production of pestaloficiols and macrodiolide ficiolides revealed by manipulations of epigenetic regulators in an endophytic fungus. Org. Lett. 18: 1832-1835. https://doi.org/10.1021/acs.orglett.6b00562
- Anders C, Jinek M. 2014. In vitro enzymology of cas9. Methods Enzymol. 546: 1-20. https://doi.org/10.1016/B978-0-12-801185-0.00001-5
- Alberti F, Foster GD, Bailey AM. 2017. Natural products from filamentous fungi and production by heterologous expression. Appl. Microbiol. Biotechnol. 101: 493-500. https://doi.org/10.1007/s00253-016-8034-2
- Qiao Y-M, Yu R-L, Zhu P. 2019. Advances in targeting and heterologous expression of genes involved in the synthesis of fungal secondary metabolites. RSC Adv. 9: 35124-35134. https://doi.org/10.1039/C9RA06908A
- Cobb RE, Zhao H. 2012. Direct cloning of large genomic sequences. Nat. Biotechnol. 30: 405-406. https://doi.org/10.1038/nbt.2207
- Kouprina N, Noskov VN, Larionov V. 2020. Selective isolation of large segments from individual microbial genomes and environmental DNA samples using transformation-associated recombination cloning in yeast. Nat. Protoc. 15: 734-749. https://doi.org/10.1038/s41596-019-0280-1
- Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas9 systems. Nat. Biotechnol. 31: 233-239. https://doi.org/10.1038/nbt.2508
- Karvelis T, Gasiunas G, Siksnys V. 2013. Programmable DNA cleavage in vitro by cas9. Biochem. Soc. Trans. 41: 1401-1406. https://doi.org/10.1042/BST20130164
- Huang MY, Mitchell AP. 2017. Marker recycling in Candida albicans through CRISPR-Cas9-induced marker excision. mSphere 2: 2.
- Krappmann S. 2017. CRISPR-Cas9, the new kid on the block of fungal molecular biology. Med. Mycol. 55: 16-23. https://doi.org/10.1093/mmy/myw097
- Sarkari P, Marx H, Blumhoff ML, Mattanovich D, Sauer M, Steiger MG. 2017. An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger. Bioresour. Technol. 245: 1327-1333. https://doi.org/10.1016/j.biortech.2017.05.004
- Muller H, Annaluru N, Schwerzmann JW, Rhichardson SM, Dymond J, Cooper EM, et al. 2012. Assembling large DNA segments in yeast. Methods Mol. Biol. 852: 133-150. https://doi.org/10.1007/978-1-61779-564-0_11
- Wortman JR, Fedorova N, Crabtree J, Jordar V, Maiti BJ, Amedeo P, et al. 2006. Whole genome comparison of the A. fumigatus family. Med. Mycol. 44: S3-S7.
- Wang X, Wu F, Liu L, Liu X, Che Y, Keller NP, et al. 2015. The bzip transcription factor pfzipa regulates secondary metabolism and oxidative stress response in the plant endophytic fungus pestalotiopsis fici. Fungal Genet. Biol. 81: 221-228. https://doi.org/10.1016/j.fgb.2015.03.010