DOI QR코드

DOI QR Code

A study on Modeling Method to Extract some Information for Scatterer Points of a Target

표적 산란점 정보 추출을 위한 모델링 기법 연구

  • Received : 2020.02.14
  • Accepted : 2021.11.25
  • Published : 2021.12.31

Abstract

Inverse synthetic aperture radar (ISAR) image is a powerful tool to show the major scattering regions (scatterer points) on the target. It is normally used to identify and classify targets. Finding information for the scatter points of ISAR image plays an important role in modeling the features of targets. In this paper, we propose a modeling method to extract some information about the scatterer points by minimizing approximating error. Here, the extracted information include not only the location of scatterer points but also some statistical data about the error of the their location. These extracted data can be used to implement the randomness of the location of the scatterer points. Furthermore, we reconstruct an image from the extracted data for scatterer points obtained by our proposed method. And we show that the reconstructed ISAR image is well approximated to the original ISAR image in order to justify our proposed modeling method.

역합성개구면레이다(ISAR) 영상은 표적의 주요 산란 부위를 보여주는 강력한 도구이다. 표적을 식별 및 분류하는데 주로 사용된다. ISAR 영상의 산란점 정보를 찾는 것은 표적 특징을 모델링하는데 중요하다. 본 논문에서는 ISAR 영상 데이터와 모델링 함수와의 근사오차를 최소화함으로서 산란점 정보를 추출하는 모델링 방법을 제안한다. 여기서 추출된 산란점 정보는 시뮬레이션에서 사용될 표적의 산란점 위치뿐만 아니라 표적 산란점의 오차요소를 고려하는 시뮬레이션에 사용될 수 있는 표적 산란점 위치오차의 통계적 정보도 포함한다. 또한 제안된 방법에 의해서 얻어진 산란점 정보로부터 영상을 재구성하고 원래의 ISAR 영상을 잘 근사하는지 확인하였다.

Keywords

References

  1. Berizzi, F. and Corsini, G. (1996), "Autofocusing of inverse syntheic aperture radar images using contrast optimization," IEEE Transactions on Aerospace and Electronic System, 32(3), 1185-1191. https://doi.org/10.1109/7.532282
  2. Blackman, S. (1999), "Multiple-target tracking with Radar Applications", Artech House.
  3. Chen, V. C. and Martorella, M. (2007), "On bistatic inverse synthetic aperture radar," IEEE Transactions on Aerospace and Electronic System, 43(3), 1125-1134. https://doi.org/10.1109/TAES.2007.4383602
  4. Edde, B. (1992), "Radar : Principles, Technology, Applications", Prentice Hall PTR.
  5. Fletcher, R. (1987), "Practical Methods of Optimization", John Wiley & Sons Inc., NY.
  6. Ha, H. J., W. Park, S. S. Park and Ryoo, C. K. (2014), "FMCW Seeker Measurement modeling using ISAR image", Korean Society for Aeronautical & Space 2014 Spring Conference, 487-490.
  7. Li, Y., Fu, Y. and Le-wei, L. (2010), "ISAR imaging of multiple targets using particle swarm optimization- adaptive joint time frequency approach", IET Signal Processing, 4(4), 343-351. https://doi.org/10.1049/iet-spr.2009.0046
  8. Ozdemir, C. (2011), "Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms", John Wiley & Sons Inc., NJ.
  9. Skolnik, M. I. (2006), "Introduction to Radar Systems", 2nd ed. McGrow-Hill.
  10. Tahk, M. J., Ryoo, C. K., Choi, H. L., Shim, S. W., Seo, M. G., Hong, S. M., Cho, D. H., Park, S. S. and Park, K. K. (2014), "A study on Seeker Based Fuzing Algorithm to Maximize KE Rod Warhead Effect", ADD technical report.
  11. Wessling, A. (2002), "Radar Target Modelling Based on RCS Measurements", Linkopings Tekniska Hogskloa.