References
- S. M. Chun, S. Y. Suk(2019), "Development and implementation of smart manufacturing big-data platform using opensource for failure prognostics and diagnosis technology of industrial robot." IEMEK Journal of Embedded Systems and Applications, 14(4):187-195. https://doi.org/10.14372/IEMEK.2019.14.4.187
- G. Xu et al.(2019), "Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning." Sensors, 19(5):1088. https://doi.org/10.3390/s19051088
- J. Lee et al.(2014), "Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications." Mechanical Systems and Signal Processing, 42(1-2):314-334. https://doi.org/10.1016/j.ymssp.2013.06.004
- J. H. Jang et al.(2011), "Propose the method for monitoring of LCD conveyance robot condition using vibration signal." Proceedings of the Korean Society for Noise and Vibration Engineering Conference, Korea, 584-585.
- H. Yoon(2019), "DBSCAN parameter optimization of predictive maintenance system for wafer transfer robot using design of experiment." Master's thesis, Myongji University.
- A. A. Jaber, R. Bicker(2016), "Fault diagnosis of industrial robot gears based on discrete wavelet transform and artificial neural network." Insight-Non-Destructive Testing and Condition Monitoring, 58(4):179-186. https://doi.org/10.1784/insi.2016. 58.4.179
- Y. H. Lee et al.(2019), "Seq2Seq model-based prognostics and health management of robot arm." The Journal of Korea Institute of Information, Electronics, and Communication Technology, 12(3):242-250. https://doi.org/10.17661/jkiiect.2019.12.3.242
- T. Borgi et al.(2017), "Data analytics for predictive maintenance of industrial robots." 2017 International Conference on Advanced Systems and Electric Technologies(IC_ASET), Hammamet, Tunisia. https://doi.org/10.1109/ASET.2017.7983729
- R. N. A. Algburi, H. Gao(2019), "Health assessment and fault detection system for an industrial robot using the rotary encoder signal." Energies, 12(14): 2816. https://doi.org/10.3390/en12142816
- M. Zhao et al.(2018), "Instantaneous speed jitter detection via encoder signal and its application for the diagnosis of planetary gearbox." Mechanical Systems and Signal Processing, 98:16-31. https://doi.org/10.1016/j.ymssp.2017.04.033
- A. C. Bittencourt et al.(2011), "Modeling and identification of wear in a robot joint under temperature uncertainties." IFAC Proceedings, 44(1):10293-10299. https://doi.org/10.3182/20110828-6-IT-1002.01078
- C. Deb et al.(2016), "Fault diagnosis of a single point cutting tool using statistical features by random forest classifier." Indian Journal of Science and Technology, 9(33):1-8. https://doi.org/10.17485/ijst/2016/v9i33/101340
- Z. Guo, M. Liu, Z. Xiong(2019), "Fault diagnosis of motor based on VMD-sample entropy-random forest." Journal of Physics: Conference Series, 1345(3). https://doi.org/10.1088/1742-6596/1345/3/032099
- K. Bhakta et al.(2019), "Fault diagnosis of induction motor bearing using cepstrum-based preprocessing and ensemble learning algorithm." 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox's Bazar, Bangladesh. https://doi.org/ 10.1109/ECACE.2019.8679223
- Y. Liu et al.(2020), "Fault diagnosis of power transformer based on tree ensemble model." IOP Conference Series: Materials Science and Engineering, 715(1). https://doi.org/10.1088/1757-899X/715/1/012032
- S. P. Curram, J. Mingers(1994), "Neural networks, decision tree induction and discriminant analysis: An empirical comparison." Journal of the Operational Research Society, 45(4):440-450. https://doi.org/10.1057/jors.1994.62
- P. Cao, S. Zhang, J. Tang(2018), "Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning." IEEE Access, (6):26241-26253. https://doi.org/10.1109/ACCESS.2018.2837621
- S. Nawar, A. M. Mouazen(2017), "Comparison between random forests, artificial neural networks and gradient boosted machines methods of on-line Vis-NIR spectroscopy measurements of soil total nitrogen and total carbon." Sensors, 17(10):2428. https://doi.org/10.3390/s17102428
- C. Krauss, X. A. Do, N. Huck(2017), "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500." European Journal of Operational Research, 259(2):689-702. https://doi.org/10.1016/j.ejor.2016.10.031
- E. Raczko, B. Zagajewski(2017), "Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images." European Journal of Remote Sensing, 50(1):144-154. https://doi.org/10.1080/22797254.2017.1299557
- I. Nitze, U. Schulthess, H. Asche(2012), "Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification." Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, p. 035.
- D. W. Ruck, S. K. Rogers, M. Kabrisky(1990), "Feature selection using a multilayer perceptron." Journal of Neural Network Computing, 2(2):40-48.
- S. T. Han et al.(2011), "A study on the judgement rating for level of need for long-term care insurance using a decision tree." CSAM (Communications for Statistical Applications and Methods), 18(1):137-146.
- L. Breiman(2001), "Random forests." Machine Learning, 45(1):5-32. https://doi.org/10.1023/A:1010933404324
- S. Bae, J. Yu(2018), "Estimation of the apartment housing price using the machine learning methods: The case of Gangnam-gu, Seoul." Journal of the Korea Real Estate Analysts Association, 24(1):69-85. https://doi.org/10.19172/KREAA.24.1.5
- J. Park, M. Chae, S. Jung(2016), "Classification model of types of crime based on random-forest algorithms and monitoring interface design factors for real-time crime prediction." KIISE Transactions on Computing Practices, 22(9):455-460. https://doi.org/10.5626/KTCP.2016.22.9.455