DOI QR코드

DOI QR Code

Effect of Solution Temperature on the Cavitation Corrosion Properties of Carbon Steel and its Electrochemical Effect

  • Jeon, J.M. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Yoo, Y.R. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, Y.S. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
  • Received : 2021.12.14
  • Accepted : 2021.12.24
  • Published : 2021.12.31

Abstract

In the open system (vessel and pipe), the maximum corrosion rate of carbon steel at ca. 80 ℃ was obtained due to the decrease of dissolved oxygen by increasing the solution temperature. Effect of temperature on the cavitation damage can be explained through several mechanisms. Moreover, when cavitation occurs on the surface of metal and alloys, whether cavitation is erosion or corrosion is still controversial. This work focused on the effect of solution temperature on the corrosion of carbon steel under cavitation in an open system, Tests were performed using an electrochemical cavitation corrosion tester in 3.5% NaCl solution and the effect of solution temperature of carbon steel was discussed. Cavitation corrosion rate can be increased by cavitation, but when the temperature increases, a dissolved oxygen content reduces at a very high speed and thus the maximum cavitation corrosion temperature changed from 80 ℃ to 45 ℃. Below the maximum cavitation temperature, the electrochemical effect was more dominant than the mechanical effect by increasing temperature, but over the maximum cavitation temperature, the mechanical effect was more dominant than the electrochemical effect by increasing temperature.

Keywords

Acknowledgement

This work was supported by KOREA HYDRO & NUCLEAR POWER CO., LTD (No. 2019-Technical-08).

References

  1. S. Nesic, Key issues related to modelling of internal corrosion of oil and gas pipelines - A review. Corrosion Science, 49, 4308 (2007). Doi: https://doi.org/10.1016/j.corsci.2007.06.006
  2. J. A. Jeong, M. S. Kim, S. D. Yang, C. H. Hong, N. K. Lee, and D. H. Lee, Study of the electrochemical polarization test of carbon steel in natural seawater, Journal of the Korean Society of Marine Engineering, 42, 274 (2018). Doi: https://doi.org/10.5916/jkosme.2018.42.4.274
  3. A. A. B. Saleh, K. K. Dinesh, R. ElanseZhian, Development of Corrosion Resistance Coatings for Sea Water Pipeline, International Journal of Students' Research In Technology & Management, 4, 24 (2016). Doi: https://doi.org/10.18510/ijsrtm.2016.421
  4. Y. Huang, D. Ji, Experimental study on seawater-pipeline internal corrosion monitoring system, Sensors and Actuators B: Chemical, 135, 375 (2008). Doi: https://doi.org/10.1016/j.snb.2008.09.008
  5. J. A. Jeong, M. S. Kim, S. D. Yang, C. H. Hong, N. K. Lee, D. H. Lee, Cathodic protection using insoluble anodes by delivering protection currents to the inner surfaces of carbon steel seawater pipes, Journal of the Korean Society of Marine Engineering, 42, 280 (2018). Doi: https://doi.org/10.5916/jkosme.2018.42.4.280
  6. S. Y. Lee, K. H. Lee, C. U. Won, S. Na, Y. G. Yoon, M. H. Lee, Y. H. Kim, K. M. Moon, J. G. Kim, Electrochemical Evaluation of Corrosion Property of Welded Zone of Seawater Pipe by DC Shielded Metal Arc Welding with Types of Electrodes, Ocean Engineering and Technology, 27, 79 (2013). Doi: https://doi.org/10.5574/KSOE2013.27.3.079
  7. F. W. Fink, Saline water conversion, 1st de., p. 27, American Chemical Society: Washington, DC (1960). Doi: https://doi.org/10.1021/ba-1960-0027
  8. S. J. Kim, Apparatus on Corrosion Protection and Marine Corrosion of Ship, The Korean Institute of Surface Engineering, 44, 105 (2011). Doi: https://doi.org/10.5695/JKISE.2011.44.3.105
  9. J. W. Kim, Protection Technique by coating and lining. Journal of the Korean Society of Marine Engineers, 24, 1 (2000).
  10. C. Chandrasekaran, Anticorrosive rubber lining, 1st ed., p. 43, Elsevier Science, United Kingdom (2017). Doi: https://doi.org/10.1016/B978-0-323-44371-5.12001-8
  11. M. S. Camila, S. Deborah, S. G. Thiago, Coatings for saltwater pipelines, International Journal of Advanced Engineering Research and Science, 5, 266 (2018). Doi: https://doi.org/10.22161/ijaers.5.9.30
  12. C. S. Hong, J. P. Yoon, Y. B. Pyo, S. J. Park, Characteristics of rubber material for lining, Rubber Technology, 10, 99 (2009).
  13. W. Deng, G. Hou, S. Li, J. Han, X. Zhao, X. Liu, Y. An, H. Zhou, J. Chen, A new methodology to prepare ceramic-organic composite coatings with good cavitation erosion resistance, Ultrasonics Sonochemistry, 44, 115 (2018). Doi: https://doi.org/10.1016/j.ultsonch.2018.02.018
  14. J. M. Jeon, Y. R. Yoo, M. J. Jeong, Y. C. Kim, and Y. S. Kim, Effect of solution temperature on the cavitation degradation properties of epoxy coatings for seawater piping, Corrosion Science and Technology, 20, 335 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.335
  15. I. J. Jang, J. M. Jeon, K. T. Kim, Y. R. Yoo, Y. S. Kim, Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃, Corrosion Science and Technology, 20, 26 (2020). Doi: https://doi.org/10.14773/cst.2021.20.1.26
  16. Korea Hydrographic and Oceanographic Agency, Annual Report of Korea Oceanographic Observation Network, 11-1192136-000052-10, No.9, p. 48 (2020).
  17. S. K. Jang, S. J. Lee, J. C. Park, S. J. Kim, Evaluation of Corrosion Tendency for S355ML Steel with Seawater Temperature, Corrosion Science and Technology, 14, 232 (2015). Doi: https://doi.org/10.14773/cst.2015.14.5.232
  18. L. G. Longsworth, Temperature dependence of diffusion in aqueous solutions, The Journal of Physical Chemistry A, 58, 770 (1954). Doi: https://doi.org/10.1021/j150519a017
  19. D. G. Miller, Estimation of Tracer Diffusion Coefficients of Ions in Aqueous Solution, Lawrence Livermore Laboratory, 14, 1 (1982). Doi: https://doi.org/10.2172/6860099
  20. A. Toloei, S. Atashin, M. Pakshir, Corrosion rate of carbon steel under synergistic effect of seawater parameters including pH, temperature, and salinity in turbulent condition, Corrosion Reviews, 31, 135 (2013). Doi: https://doi.org/10.1515/corrrev-2013-0032
  21. E. Bardal, Corrosion and protection, 1st ed., p. 68, Springer-Verlag, London (2004).
  22. H. H. Uhlig, R. W. Revie, Corrosion and corrosion control, 3rd ed., p. 95, John Wiley & Sons, New York (2008).
  23. F. G. Hammitt, D. O. Rogers, Effects of Pressure and Temperature Variation in Vibratory Cavitation Damage Test, Mechanical Engineering Science, 12, 432 (1970). Doi: https://doi.org/10.1243/JMES_JOUR_1970_012_072_02
  24. Y. Iwai, T. Okada, F. G. Hammitt, Effect of temperature on the cavitation erosion of cast iron, Wear, 85, 181 (1983). Doi: https://doi.org/10.1016/0043-1648(83)90062-5
  25. C. T. Kwok, H. C. Man, L. K. Leung, Effect of temperature, pH and sulphide on the cavitation erosion behaviour of super duplex stainless steel, Wear, 211, 84 (1997). Doi: https://doi.org/10.1016/S0043-1648(97)00072-0
  26. M. Dular, Hydrodynamic cavitation damage in water at elevated temperatures, Wear, 346, 78(2016). Doi: https://doi.org/10.1016/j.wear.2015.11.007
  27. I. J. Jang, K. T. Kim, Y. R. Yoo, Y. S. Kim, Effects of Ultrasonic Amplitude on Electrochemical Properties During Cavitation of Carbon Steel in 3.5% NaCl Solution, Corrosion Science and Technology, 19, 163 (2020). Doi: https://doi.org/10.14773/cst.2020.19.4.163
  28. ASTM G32-16, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, ASTM International, West Conshohocken, PA (2016). Doi: https://doi.org/10.1520/G0032-16
  29. N. D. Tomashov, Theory of corrosion and protection of metals; the science of corrosion, Macmillan, New York (1966).
  30. K. Peng, F. G. F. Qin, R. Jiang, S. Kang, Interpreting the influence of liquid temperature on cavitation collapse intensity through bubble dynamic analysis, Ultrasonics Sonochemistry, 69, 1 (2020). Doi: https://doi.org/10.1016/j.ultsonch.2020.105253
  31. B. Saleh, A. A. Kasem, A. E. E. Deen, S. M. Ahmed, Investigation of Temperature Effects on Cavitation Erosion Behavior Based on Analysis of Erosion Particles, Tribology, 132, 1 (2010). Doi: https://doi.org/10.1115/1.4002069