DOI QR코드

DOI QR Code

Design of the broadband pattern of a cymbal transducer array

심벌 트랜스듀서 배열의 광대역 패턴 설계

  • Received : 2020.10.08
  • Accepted : 2020.12.08
  • Published : 2021.01.31

Abstract

The cymbal transducer is a miniaturized version of the Class V flextensional transducer. It has low resonant frequency and high output pressure characteristics compared with its size. However, since it has high quality factor and low energy conversion efficiency as well, it is often used as an array rather than single. When used as an array, a big change in the frequency characteristics occurs in comparison with that of the single transducer due to the interaction between constituent transducers. In this study, we designed a pattern of cymbal array with a view to having broadband characteristics. Three transducers having different center frequencies were designed first. The designed cymbal transducers were used to construct all possible patterns of a 3 × 3 planar array. After analyzing frequency characteristics of these patterns, based on the results, we derived the most effective pattern to achieve a higher fractional bandwidth. The derived array pattern showed an improvement of the fractional bandwidth by 24.9 % in comparison with the reference model.

심벌 트랜스듀서는 Class V flextensional 트랜스듀서의 소형화된 버전으로서 크기에 비해 낮은 공진 주파수와 고출력 특성을 가진다. 하지만, 높은 품질계수와 낮은 에너지 변환 효율성 때문에 단일보다는 배열형으로 많이 사용된다. 배열형으로 사용하면 구성 트랜스듀서들 간의 상호작용으로 인해 단일 트랜스듀서에 비해 주파수 특성에 많은 변화가 나타난다. 본 연구에서는 이러한 성질을 이용하여 심벌 어레이가 광대역 특성을 가지게 하는 패턴을 설계하였다. 특정 중심 주파수를 가지는 세 개의 심벌 트랜스듀서를 먼저 설계하였고, 설계된 심벌 트랜스듀서들로 3 × 3 평면 배열을 구성할 수 있는 모든 패턴을 찾았다. 그 후, 이들 패턴들의 주파수 특성을 분석하고, 그 결과를 바탕으로 높은 비대역폭을 구현하기 위해 가장 효과적인 배열 패턴을 도출하였다. 도출된 배열 패턴은 기준 모델에 비해 비대역폭이 최대 24.9 % 개선되었다.

Keywords

References

  1. J. H. Cui, J. Kong, M. Gerla, and S. Zhou, "The challenges of building scalable mobile underwater wireless sensor networks for aquatic applications," IEEE Netw. 20, 12-18 (2006). https://doi.org/10.1109/MNET.2006.1580914
  2. Q. C. Xu, S. Yoshikawa, J. R. Belsick, and R. E. Newnham, "Piezoelectric composites with high sensitivity and high capacitance for use at high pressures," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 38, 634-639 (1991). https://doi.org/10.1109/58.108862
  3. F. Bejarano, A. Feeney, and M. Lucas, "A cymbal transducer for power ultrasonics applications," Sens. Actuators, A: Phys. 210, 182-189 (2014). https://doi.org/10.1016/j.sna.2014.02.024
  4. J. Zhang, W. J. Hughes, P. Bouchilloux, R. J. Meyer Jr., K. Uchino, and R. E. Newnham, "A class V flextensional transducer: The cymbal," Ultrasonics, 37, 387-393 (1999). https://doi.org/10.1016/S0041-624X(99)00021-9
  5. A. Dogan, J. F. Fernandez, K. Uchino, and R. E. Newnham, "The 'cymbal' electromechanical actuator," Proc. 10th IEEE Int. Symp. Appl. Ferroelectr. 213-216 (1996).
  6. A. Dogan, K. Uchino, and R. E. Newnham, "Composite piezoelectric transducer with truncated conical endcaps 'cymbal'," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44, 597-605 (1997). https://doi.org/10.1109/58.658312
  7. R. E. Newnham, A. Dogan, D. C. Markley, J. F. Tressler, J. Zhang, E. Uzgur, R. J. Meyer Jr., A. C. HladkyHennion, and W. J. Hughes, "Size effects in capped ceramic underwater sound projectors," Ocean. Conf. Rec. 4, 2315-2321 (2002).
  8. A. Dogan, Z. O. Yazici, and E. Uzgur, "Tailoring the Q of cymbal transducer," Key Eng. Mater. 264-268, 1305-1308 (2004). https://doi.org/10.4028/www.scientific.net/KEM.264-268.1305
  9. J. F. Tressler, R. E. Newnham, and W. J. Hughes, "Capped ceramic underwater sound projector: The 'cymbal' transducer," J. Acoust. Soc. Am. 105, 591-600 (1999). https://doi.org/10.1121/1.426249
  10. J. Zhang, W. J. Hughes, R. J. Meyer Jr., K. Uchino, and R. E. Newnham, "Cymbal array: A broad band sound projector," Ultrasonics, 37, 523-529 (2000). https://doi.org/10.1016/S0041-624X(99)00111-0
  11. R. E. Newnham, J. Zhang, and R. J. Meyer Jr., "Cymbal transducers: A review," IEEE Int. Symp. Appl. Ferroelectr. 1, 29-32 (2000).
  12. J. Zhang, A. C. Hladky-Hennion, W. J. Hughes, and R. E. Newnham, "Modeling and underwater characterization of cymbal transducers and arrays," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 48, 560-568 (2001). https://doi.org/10.1109/58.911739
  13. J. F. Tressler, T. R. Howarth, and W. L. Carney, "Thin, lightweight electroacoustic projector for low frequency underwater applications," J. Acoust. Soc. Am. 116, 1536-1543 (2004). https://doi.org/10.1121/1.1778742
  14. J. Luis, E. J. Park, R. J. Meyer Jr., and N. B. Smith, "Rectangular cymbal arrays for improved ultrasonic transdermal insulin delivery," J. Acoust. Soc. Am. 122, 2022-2030 (2007). https://doi.org/10.1121/1.2769980
  15. L. Denghua and Y. Xi, "Cymbal transducer array for hydrophone applications," Ferroelectrics, 263, 131-136 (2001). https://doi.org/10.1080/00150190108225188
  16. C. Kannan, R. Dhilsha, and P. M. Rajeshwari, Shibu Jacob, and M. A. Atmanand, "Performance evaluation of cymbal hydrophones for underwater applications," Int. J. Mech. Eng. Appl. 1, 43-48 (2013). https://doi.org/10.11648/j.ijmea.20130102.13
  17. D. H. Kim and Y. Roh, "Design of a wideband cymbal transducer array" (in Korean), J. Acoust. Soc. Kor. 39, 170-178 (2020). https://doi.org/10.7776/ASK.2020.39.3.170
  18. J. L. Butler and C. H. Sherman, Transducers and Arrays for Underwater Sound (Springer, Switzerland, 2016), pp. 547-552.
  19. Y. Roh and M. S. Afzal, "Optimum design of a sparse planar array transducer for underwater vehicles by inclusion of crosstalk effect," Jpn. J. Appl. Phys. 57, 07LG02-1-7 (2018). https://doi.org/10.7567/JJAP.57.07LG02