DOI QR코드

DOI QR Code

Exploring Different Users' Perception of Smart Harness on Construction Sites

건설현장 스마트 안전대 사용자별 인식 차이에 관한 연구

  • Kim, Hyeon-tae (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Ahn, Chang-bum (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Park, Moon-seo (Department of Architecture and Architectural Engineering, Seoul National University)
  • Received : 2021.11.27
  • Accepted : 2021.12.10
  • Published : 2021.12.15

Abstract

To prevent fall from height, interest in the development and introduction of smart harness is increasing as policies and laws such as mandatory use of smart safety equipment at construction sites. However, despite the potential of smart harness, construction safety cannot be contributed unless adopted or used by users. The objective of this research is to examine the perception between safety managers and workers on smart harness, user perception according to user's experience and differences through semi-structured in-depth interviews. As a result of the interview and comparative analysis, both safety managers and workers perceived smart harness as uncomfortable, and workers with experience in using smart harness perceived that simple functions that inform risks are useful for securing safety. This research results show different user's perception of smart harness can be confirmed how much factors affect the use of smart harness, which can provide implication into establishing measures to strengthen the use of smart harness in the future.

추락사고 방지를 위해 근로자의 단순 실수와 부주의까지 포용할 수 있도록 건설현장 스마트 안전장비 사용 의무화 등의 정책 및 법령이 시행됨에 따라, 스마트 안전장비 기술 개발 및 현장 도입에 대한 관심이 더욱 증가되고 있다. 그러나 스마트 안전장비의 잠재성에도 불구하고, 사용자에게 채택되거나 사용되지 않으면 건설 안전에 기여할 수 있는 기회는 주어지지 않는다. 본 연구의 목적은 추락사고 방지를 위한 스마트 안전장비의 성능과 특징에 따른 사용자별 인식과 기대의 차이를 통해 스마트 안전장비 채택에 관한 결정요인을 조사하는 것이다. 이를 위해 스마트 안전장비 중 최근 국내/외에서 기술개발 및 연구가 활발히 진행 중인 스마트 안전대에 대한 안전관리자 및 근로자의 인식을 조사하였다. 연구 결과는 스마트 안전장비에 대한 사용자별 인식 차이를 확인함으로써 건설현장 추락사고 방지를 위한 스마트 안전장비 도입 활성화에 관한 통찰을 제공할 것이다.

Keywords

References

  1. MOEL(2021). 중대재해처벌법 주요내용.
  2. MOLIT(2020). 스마트 안전장비 도입으로 건설현장의 안전성을 높이겠습니다: 18일 건설기술 진흥법 하위법령 개정안 공포.시행, 국토교통부 보도자료.
  3. Kim, Y. and Bang, M. (2019). 안전대 부착여부를 확인할 수 있는 스마트 안전대 개발 연구 - 추락방지대 중심 - (울산: 안전보건공단 산업안전보건연구원), 2019-연구원-1541.
  4. Park, K., Lim, S., Kim, S., and Ku, KI. (2020). A Study on Institutional Improvement for Application of Smart Construction Technology. Journal of Korea Institute of Construction Safety, 3 (1).
  5. Yu, Bong Su. (2021). 스마트 안전고리 시스템, 등록특허 제 10-2218840. 대전:특허청.
  6. Lim, H. and Kim, H. (2021). 스마트 안전고리, 공개특허 제 10-2021-0075457. 대전:특허청.
  7. (주)Digiqutous. (2019). 스마트 안전 장치 및 그 운용 시스템, 등록특허 제10-2061560. 대전:특허청.
  8. (주)Safeon. (2020). 체결 탐지용 훅 센서 모듈 및 이를 가진 안전대, 공개특허 제10-2020-0132318. 대전:특허청.
  9. (주)Safeon. (2021). 체결 탐지용 훅 센서 모듈 및 이를 가진 안전대, 등록특허 제10-2211426. 대전:특허청.
  10. (주)Safeon, and Korea South-East Power Co. (2019). 추락방지 시스템, 등록특허 제10-2057239. 대전: 특허청.
  11. (주)Elssen (2021). 안전고리 체결시스템과 안전고리 체결제어방법, 공개특허 제10-2021-0071269.
  12. (주)GSIL. (2019). 고소작업용 안전벨트 유니트를 이용한 작업안전 관리시스템, 등록특허 제10-1964727. 대전:특허청.
  13. (주) Hanlim Tech. (2021). 고소작업용 안전고리 체결 확인 센서를 구비한 안전관리 시스템, 공개특허 제10-2021-0000451. 대전:특허청.
  14. C. Buenaflor and H.C. Kim. (2013). Six human factors to acceptability of wearable computers. Int. J. Multimed. Ubiquit. Eng., 8 (3), 103-114.
  15. Charmaz, K. (2006). Constructing Grounded Theory: A Practical Guide through Qualitative Analysis, SAGE.
  16. C. R. Ahn, S. H. Lee, C. Sun, H. Jebelli, K. H. Yang, and B. J. Choi. (2019). Wearable Sensing Technology Applications in Construction Safety and Health. J. Constr. Eng. Manage., 145 (11), 03119007. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001708
  17. Choi, B., Hwang, S., and Lee, S. (2017). What drives construction workers' acceptance of wearable technologies in the workplace?: Indoor localization and wearable health devices for occupational safety and health. Autom. Constr. 84, 31-41. https://doi.org/10.1016/j.autcon.2017.08.005
  18. F. D. Davis. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. Manag. Inf. Syst. Q., 13 (3), 319-340. https://doi.org/10.2307/249008
  19. Francis, J. J., Johnston, M., Robertson, C., Glidewell, L., Entwistle, V., Eccles, M. P., and Grimshaw, J. M. (2010). What is an adequate sample size? Operationalising data saturation for theory-based interview studies. Psychology & Health, Routledge, 25 (10), 1229-1245. https://doi.org/10.1080/08870440903194015
  20. H. Li, A. Gupta, J. Zhang, and R. Sarathy (2014). Examining the decision to use standalone personal health record systems as a trust-enabled fair social contract. Decis. Support. Syst. 57, 376-386. https://doi.org/10.1016/j.dss.2012.10.043
  21. J. M. Gomez-de-Gabriel, J. A. Fernandez-Madrigal, A. Lopez-Arquillos, and J. C. Rubio-Romero (2019). Monitoring harness use in construction with BLE beacons. Measurement, 131, 329-340. https://doi.org/10.1016/j.measurement.2018.07.093
  22. M. d. C. Rey-Merchan, J. M. Gomez-de-Gabriel, J. Fernandez-Madrigal, and A. Lopez-Arquillos (2020). Improving the prevention of fall from height on construction sites through the combination of technologies. International Journal of Occupational Safety and Ergonomics.
  23. Ministry of Land, Infrastructure and Transport (2019). Guidelines on the prevention of fall accidents in construction site.
  24. Park, Y., H. Son, and C. Kim. (2012). Investigating the determinants of construction professionals' acceptance of web-based training: An extension of the technology acceptance model. Autom. Constr., 22 (Mar), 377-386. https://doi.org/10.1016/j.autcon.2011.09.016
  25. S. S. Binyamin and Md. R. Hoque(2020). Understanding the Drivers of Wearable Health Monitoring Technology: An Extension of the Unified Theory of Acceptance and Use of Technology. Sustainability. 12, 9605. https://doi.org/10.3390/su12229605
  26. Son, H., S. Lee, and C. Kim. (2015). What drives the adoption of building information modeling in design organizations? An empirical investigation of the antecedents affecting architects' behavioral intentions. Autom. Constr., 49 (Part A), 92-99. https://doi.org/10.1016/j.autcon.2014.10.012
  27. T.K.M. Wong, S. S. Man, and A.H.S. Chan. (2021). Exploring the acceptance of PPE by construction workers: An extension of the technology acceptance model with safety management practices and safety consciousness. Saftey Science, 139, 105239. https://doi.org/10.1016/j.ssci.2021.105239
  28. V. Venkatesh, F.D. Davis. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies, Manag. Sci., 46 (2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
  29. V. Venkatesh, J.Y. Thong, and X. Xu. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology, Manag. Inf. Syst. Q., 36 (1), 157-178. https://doi.org/10.2307/41410412
  30. V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis. (2003). User Acceptance of Information Technology: Toward a Unified View, Manag. Inf. Syst., 27 (3), 425-478. https://doi.org/10.2307/30036540
  31. X. Yang, Y. Yu, S. Shirowzhan, S. sepasgozar, and H. Li (2020). Automated PPE-Tool pair check system for construction safety using smart IoT. Journal of Building Engineering, 32, 101721. https://doi.org/10.1016/j.jobe.2020.101721
  32. Y. Gao, H. Li, and Y. Luo. (2015). An empirical study of wearable technology acceptance in healthcare. Ind. Manag. Data Syst. 115 (9), 1704-1723. https://doi.org/10.1108/IMDS-03-2015-0087
  33. Y. Sun, N. Wang, X. Guo, Z. and Peng. (2013). Understanding the acceptance of mobile health services: a comparison and integration of alternative models. J. Electron. Commer., 14 (2), 183-200.
  34. Zhang, Y., H. Luo, M. Skitmore, Q. Li, and B. Zhong. (2019). Optimal camera placement for monitoring safety in metro station construction work. J. Constr. Eng. Manage, 145 (1).