DOI QR코드

DOI QR Code

Characterization of binding specificity using GST-conjugated mutant huntingtin epitopes in surface plasmon resonance (SPR)

  • Cho, Hang-Hee (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University) ;
  • Kim, Hong-Duck (Department of Public Health (Division of Environmental Health Science), New York Medical College) ;
  • Cho, Jae-Hyeon (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University)
  • 투고 : 2021.09.03
  • 심사 : 2021.11.24
  • 발행 : 2021.12.30

초록

Polyglutamine extension in the coding sequence of mutant huntingtin causes neuronal degeneration associated with the formation of insoluble polyglutamine aggregates in Huntington's disease (HD). Mutant huntingtin can form aggregates within the nucleus and processes of neurons possibly due to misfolding of the proteins. To better understand the mechanism by which an elongated polyglutamine causes aggregates, we have developed an in vitro binding assay system of polyglutamine tract from truncated huntingtin. We made GST-HD exon1 fusion proteins which have expanded polyglutamine epitopes (e.g., 17, 23, 32, 46, 60, 78, 81, and 94 CAG repeats). In the present emergence of new study adjusted nanotechnology on protein chip such as surface plasmon resonance strategy which used to determine the substance which protein binds in drug discovery platform is worth to understand better neurodegenerative diseases (i.e., Alzheimer disease, Parkinson disease and Huntington disease) and its pathogenesis along with development of therapeutic measures. Hence, we used strengths of surface plasmon resonance (SPR) technology which is enabled to examine binding specificity and explore targeted molecular epitope using its electron charged wave pattern in HD pathogenesis utilize conjugated mutant epitope of HD protein and its interaction whether wild type GST-HD interacts with mutant GST-HD with maximum binding affinity at pH 6.85. We found that the maximum binding affinity of GST-HD17 with GST-HD81 was higher than the binding affinities of GST-HD17 with other mutant GST-HD constructs. Furthermore, our finding illustrated that the mutant form of GST-HD60 showed a stronger binding to GST-HD23 or GST-HD17 than GST-HD60 or GST-HD81. These results indicate that the binding affinity of mutant huntingtin does not correlate with the length of polyglutamine. It suggests that the aggregation of an expanded polyglutamine might have easily occurred in the presence of wild type form of huntingtin.

키워드

과제정보

This research was supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1F1A104896911).

참고문헌

  1. Bano D, Zanetti F, Mende Y, Nicotera P. 2011. Neurodegenerative processes in Huntington's disease. Cell Death Dis. 10;2(11): e228. https://doi.org/10.1038/cddis.2011.112
  2. Bhide PG, Day M, Sapp E, Schwarz C, Sheth A, Kim J, Young AB, Penney J, Golden J, Aronin N, M. DiFiglia M. 1996. Expression of normal and mutant huntingtin in the developing brain. J Neurosci. 16: 5523-35. https://doi.org/10.1523/jneurosci.16-17-05523.1996
  3. Burrus CJ, McKinstry SU, Kim N, Ilcim Ozlu M, Santoki AV, Fang FY, Ma A, Karadeniz YB, Worthington AK, Dragatsis I, Zeitlin S, Yin HH, Eroglu C. 2020. Striatal Projection Neurons Require Huntingtin for Synaptic Connectivity and Survival. Cell Rep. 30(3): 642-657. https://doi.org/10.1016/j.celrep.2019.12.069
  4. Busch A, Engemann S, Lurz R, Okazawa H, Lehrach H, Wanker EE. 2003. Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington's disease. J Biol Chem. 278: 41452-61. https://doi.org/10.1074/jbc.M303354200
  5. Cooper JK, Schilling G, Peters MF, Herring WJ, Sharp AH, Kaminsky Z, Masone J, Khan FA, Delanoy M, Borchelt DR, Dawson VL, Dawson TM, Ross CA. 1998. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet. 7: 783-90. https://doi.org/10.1093/hmg/7.5.783
  6. Dabrowska M, Juzwa W, Krzyzosiak WJ, Olejniczak M. 2018. Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases. Front Neurosci. 12: 75. https://doi.org/10.3389/fnins.2018.00075
  7. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 277: 1990-3. https://doi.org/10.1126/science.277.5334.1990
  8. Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM, Mouradian MM, Young AB, Tanese N, Krainc D. 2002. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science. 296: 2238-43. https://doi.org/10.1126/science.1072613
  9. Hackam AS, Singaraja R, Wellington CL, Metzler M, McCutcheon K, Zhang T, Kalchman M, Hayden MR. 1998. The influence of huntingtin protein size on nuclear localization and cellular toxicity. J Cell Biol. 141: 1097-105. https://doi.org/10.1083/jcb.141.5.1097
  10. Hackam AS, Singaraja R, Zhang T, Gan, L. Hayden MR. 1999. In vitro evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease. Hum Mol Genet. 8: 25-33. https://doi.org/10.1093/hmg/8.1.25
  11. Jana NR, Tanaka M, Wang G, Nukina N. 2000. Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity, Hum Mol Genet. 9: 2009-18. https://doi.org/10.1093/hmg/9.13.2009
  12. Kim S, Nollen EA, Kitagawa K, Bindokas VP, Morimoto RI. 2002. Polyglutamine protein aggregates are dynamic. Nat Cell Biol. 4: 826-31. https://doi.org/10.1038/ncb863
  13. Koshy BT, Zoghbi HY. 1997. The CAG/polyglutamine tract diseases: gene products and molecular pathogenesis. Brain Pathol. 7: 927-42. https://doi.org/10.1111/j.1750-3639.1997.tb00894.x
  14. Li SH, Cheng AL, Zhou H, Lam S, Rao M, Li H, Li XJ. 2002. Interaction of Huntington disease protein with transcriptional activator Sp1. Mol Cell Biol. 22: 1277-87. https://doi.org/10.1128/MCB.22.5.1277-1287.2002
  15. Li SH, Li XJ. 1998. Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats. Hum Mol Genet. 7: 777-82. https://doi.org/10.1093/hmg/7.5.777
  16. Li SH, Li XJ. 2004. Huntingtin-protein interactions and the pathogenesis of Huntington's disease. Trends in Genetics. 20: 146-154. https://doi.org/10.1016/j.tig.2004.01.008
  17. Lunkes A, Trottier Y, Fagart J, Schultz P, Zeder-Lutz G, Moras D, Mandel JL. 1999. Properties of polyglutamine expansion in vitro and in a cellular model for Huntington's disease. Philos Trans R Soc Lond B Biol Sci. 354: 1013-1019. https://doi.org/10.1098/rstb.1999.0453
  18. Marquette A, Aisenbrey C, Bechinger B. 2021. Membrane Interactions Accelerate the Self-Aggregation of Huntingtin Exon 1 Fragments in a Polyglutamine Length-Dependent Manner. Int J Mol Sci. 22(13): 6725. https://doi.org/10.3390/ijms22136725
  19. Martin JB, Gusella J. 1986. Huntington's disease. Pathogenesis and management. N Engl J Med. 315; 1267-76. https://doi.org/10.1056/NEJM198611133152006
  20. Martindale D, Hackam A, Wieczorek A, Ellerby L, Wellington C, McCutcheon K, Singaraja RKazemi-Esfarjani P, Devon R, Kim SU, Bredesen DE, Tufaro F, Hayden MR. 1998. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet. 18: 150-4. https://doi.org/10.1038/ng0298-150
  21. Moulder KL, Onodera O, Burke JR, Strittmatter WJ, Jr. Johnson EM. 1999. Generation of neuronal intranuclear inclusions by polyglutamine-GFP: analysis of inclusion clearance and toxicity as a function of polyglutamine length. J Neurosci. 19: 705-15. https://doi.org/10.1523/jneurosci.19-02-00705.1999
  22. Narain Y, Wyttenbach A, Rankin J, Furlong RA, Rubinsztein DC. 1999. A molecular investigation of true dominance in Huntington's disease. J Med Genet. 36: 739-46. https://doi.org/10.1136/jmg.36.10.739
  23. Preisinger E, Jordan BM, Kazantsev A, Housman D. 1999. Evidence for a recruitment and sequestration mechanism in Huntington's disease. Philos Trans R Soc Lond B Biol Sci. 354: 1029-34. https://doi.org/10.1098/rstb.1999.0455
  24. Reddy PH, Williams M, Tagle DA. 1999. Recent advances in understanding the pathogenesis of Huntington's disease. Trends Neurosci. 22: 248-55. https://doi.org/10.1016/S0166-2236(99)01415-0
  25. Rigamonti D, Bauer JH, De-Fraja C, Conti L, Sipione S, Sciorati C, Clementi E, Hackam A, Hayden MR, Li Y, Cooper JK, Ross CA, Govoni S, Vincenz C, Cattaneo E. 2000. Wild-type huntingtin protects from apoptosis upstream of caspase-3. J Neurosci. 20: 3705-13. https://doi.org/10.1523/jneurosci.20-10-03705.2000
  26. Rubinsztein DC, Leggo J, Coles R, Almqvist E, Biancalana V, Cassiman JJ, Chotai K, Connarty M, Crauford D, Curtis A, Curtis D, Davidson MJ, Differ AM, Dode C, Dodge A, Frontali M, Ranen NG, Stine OC, Sherr M, Abbott MH, Franz ML, Graham CA, Harper PS, Hedreen JC, Jackson A, Kaplan JC, Losekoot M, MacMillan JC, Morrison P, Trottier Y, Novelletto A, Simpson SA, Theilmann J, Whittaker JL, Folstein SE, Ross CA, Hayden MR. 1996. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet. 59: 16-22.
  27. Sharp AH, Love SJ, Schilling G, Li SH, Li XJ, Bao J, Wagster MV, Kotzuk JA. Steiner JP, Lo A, Hedreen J, Sisodia S, Snyder SH, Dawson TM, Ryugo DK, Ross CA. 1995. Widespread expression of Huntington's disease gene (IT15) protein product. Neuron. 14: 1065-74. https://doi.org/10.1016/0896-6273(95)90345-3
  28. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson Jr EP. 1985. Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol. 44; 559-77. https://doi.org/10.1097/00005072-198511000-00003
  29. Walker FO, 2007. Huntington's disease. Lancet. 369 (9557): 218-28. https://doi.org/10.1016/S0140-6736(07)60111-1
  30. World Health Organization. 2019.disorders. https://www.who.int/news-room/fact-sheets/detail/mental-disorders.
  31. Yang H, Yang S, Jing L, Huang L, Chen L, Zhao X, Yang W, Pan Y, Yin P, Qin ZS, Tang B, Li S, Li XJ. 2020. Truncation of mutant huntingtin in knock-in mice demonstrates exon1 huntingtin is akey pathogenic form. Nat Commun. 11(1): 2582. https://doi.org/10.1038/s41467-020-16318-1
  32. Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamonti D, Cattane E. 2003. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet. 35: 76-83. https://doi.org/10.1038/ng1219