조선대학교 유동가시화 실험실

Flow visualization Laboratory

  • 정성용 (조선대학교 기계공학과)
  • 발행 : 2021.12.31

초록

키워드

참고문헌

  1. S.U. Choi, J.A. Eastman, 1995, "Enhancing thermal conductivity of fluids with nanoparticles," Argonne National Lab., IL (United States), No. ANL/MSD/CP-84938; CONF-951135-29.
  2. I. Pioro, W. Rohsenow, S. Doerffer, 2004, "Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface," International Journal of Heat and Mass Transfer, Vol. 47, pp.5033-5044. https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.019
  3. H. Park, S.J. Lee, S.Y. Jung, 2019, "X-ray imaging analysis on behaviors of boiling bubbles in nanofluids," International Journal of Heat and Mass Transfer, Vol.128, pp.443-449. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.015
  4. I.C. Bang, S.H. Chang, 2005, "Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool," International Journal of Heat and Mass Transfer, Vol. 48, pp.2407-2419. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
  5. H. Park, S.J. Lee, S.Y. Jung, 2019, "Effect of nanofluid formation methods on behaviors of boiling bubbles," International Journal of Heat and Mass Transfer, Vol.135, pp.1312-1318. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.091
  6. H. Park, J. Ham, H. Cho, S.Y. Jung, 2019, "Assessment of Measurement Accuracy of a Micro-PIV Technique for Quantitative Visualization of Al2O3 and MWCNT Nanofluid Flows," Energies, Vol.12, pp.2777. https://doi.org/10.3390/en12142777
  7. Z. Xue, J. J. Charonko, P. P. Vlachos, 2014, "Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification," Measurement Science and Technology, Vol.25, pp. 115301. https://doi.org/10.1088/0957-0233/25/11/115301
  8. S.Y. Jung, H. Park, 2021, "Experimental investigation of heat transfer of Al2 O3 nanofluid in a microchannel heat sink," International Journal of Heat and Mass Transfer, Vol.179, pp.121729. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121729
  9. A. Bejan, G. Tsatsaronis, M.J. Moran, 1995, "Thermal design and optimization," John Wiley & Sons.
  10. F.P.H. Akachi, P. Stulc, 1996, "Pulsating heat pipes," Proceedings of the 5th International Heat Pipe Symposium, pp. 208-217.
  11. H. Ahmad, S.K. Kim, S.Y. Jung, 2020, "Analysis of thermally driven flow behaviors for two-turn closed-loop pulsating heat pipe in ambient conditions: An experimental approach," International Journal of Heat and Mass Transfer, Vol.150, pp.119245. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119245
  12. H. Ahmad, S.Y. Jung, 2020, "Effect of active and passive cooling on the thermo-hydrodynamic behaviors of the closed-loop pulsating heat pipes," International Journal of Heat and Mass Transfer, Vol.156, pp.119814. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119814
  13. M.M.F. Figueiredo, J.L. Goncalves, A.M.V. Nakashima, A.M.F. Fileti, R.D.M. Carvalho, 2016, "The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows," Experimental Thermal and Fluid Science, Vol.70. pp.29-50. https://doi.org/10.1016/j.expthermflusci.2015.08.010
  14. H. Ahmad, S.K. Kim, J.H. Park, S.Y. Jung, 2022, "Development of two-phase flow regime map for thermally stimulated flows using deep learning and image segmentation technique," International Journal of Multiphase Flow, Vol.146, pp.103869. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103869
  15. L. Pietrasanta, M. Mameli, D. Mangini, A. Georgoulas, N. Miche, S. Filippeschi, M. Marengo, 2020, "Developing flow pattern maps for accelerated two-phase capillary flows," Experimental Thermal and Fluid Science, Vol.112, pp.109981. https://doi.org/10.1016/j.expthermflusci.2019.109981
  16. J. Katzel, H. Markotter, T. Arlt, M. Klages, J. Haussmann, M. Messerschmidt, N. Kardjilov, J. Scholta, J. Banhart, I. Manke, 2016, "Effect of Ageing of Gas Diffusion Layers on the Water Distribution in Flow Field Channels of Polymer Electrolyte Membrane Fuel Cells," Journal of Power Sources, Vol.301, pp.386-391. https://doi.org/10.1016/j.jpowsour.2015.10.004
  17. R. Ghosh, K.R. Tapan, G. Ranjan, 2015, "Cooling tower fog harvesting in power plants-A pilot study," Energy, Vol.89, pp.1018-1028. https://doi.org/10.1016/j.energy.2015.06.050
  18. J. Rivera, 2011, "Aerodynamic collection efficiency of fog water collectors," Atmospheric Research, Vol.102, pp.335-342. https://doi.org/10.1016/j.atmosres.2011.08.005
  19. J.H. Kang, J-W. Lee, J.Y. Kim, J.W. Moon, H.S. Jang, S.Y. Jung, 2021, "Effect of Mesh Wettability Modification on Atmospheric and Industrial Fog Harvesting," Frontiers in Physics, Vol.9, pp.680641. https://doi.org/10.3389/fphy.2021.680641
  20. Y. Lim, S. Lee, J. Lee, 2011, "Characteristics of ventilating flow generated by a rotating swirler in a vortex vent," Journal of Fluids and Structures, Vol.27, pp.427-437. https://doi.org/10.1016/j.jfluidstructs.2010.11.015
  21. Y. Yan, X. Li, J. Tu, P. Feng, J. Zhang, 2019, "Characterisation and analysis of indoor tornado for contaminant removal and emergency ventilation," Building and Environment, Vol.164, pp.106345. https://doi.org/10.1016/j.buildenv.2019.106345
  22. J.H.Kang, J.J Kim, H. Park, S.Y. Jung, "Characterization of tornado like flows for improving vortex ventilation performance", Journal of Building Engineering, in press, doi.org/10.1016/j.jobe.2021.103726.