DOI QR코드

DOI QR Code

Effect of cooling patches on performance of photovoltaic-thermoelectric hybrid energy devices

쿨링패치 부착에 따른 태양광-열전 융합소자의 성능 연구

  • Lee, Jaehwan (Dept. of Electrical Engineering, Korea University) ;
  • Cho, Kyoungah (Dept. of Electrical Engineering, Korea University) ;
  • Park, Yoonbeom (Dept. of Electrical Engineering, Korea University) ;
  • Kim, Sangsig (Dept. of Electrical Engineering, Korea University)
  • Received : 2021.11.30
  • Accepted : 2021.12.27
  • Published : 2021.12.31

Abstract

In this study, we examine the availability of a cooling patch to enhance the output power of a hybrid energy device (HED) comprising a photovoltaic cell (PVC) and a thermoelectric generator (TEG). The cooling patch attached on the back of the TEG drops the temperature of the PVC via the TEG and makes a large thermal gradient across the TEG under irradiances in a range of 200 to 1000 W/m2. The cooling patch is more effective for the output power of the HED as the irradiance increases, and it enhances the maximum output power of the HED to 42.1 mW at an irradiance of 1000 W/m2. The increment in the maximum output power reaches 27% owing to the attachment of the cooling patch that does not consume any power.

본 연구에서는 태양광소자와 열전소자로 이루어진 에너지 융합 발전소자에 쿨링패치를 적용하고 에너지 융합 발전소자의 성능을 조사하였다. 쿨링패치를 열전소자의 뒷면에 부착하였을 때, 에너지 융합 발전소자의 상층에 위치한 태양광소자의 온도가 저하되고 열전소자 양단의 온도차는 증가되었다. 태양광 복사 조도를 200 W/m2부터 1000 W/m2까지 증가시키면서 에너지 융합 발전소자의 성능을 측정해본 결과, 쿨링패치는 태양광의 조도가 증가할수록 에너지 융합 발전소자의 성능 향상에 효과적이었고 1000 W/m2에서는 42.1 mW까지 융합소자의 최대 출력 전력이 증가하였다. 본 연구에서는 쿨링패치를 에너지 융합 발전소자에 부착함으로써 에너지 융합 발전소자의 출력 전력이 27% 이상으로 증가하는 것을 확인하였다.

Keywords

Acknowledgement

This study was supported in part by the Technology Development Program to Solve Climate Change (NRF-2017M1A2A2087323), and the Brain Korea 21 Plus Project, 2021, and Korea University Grant.

References

  1. Y. Li, S. Witharana, H. Cao, M. Lasfargues, Y. Huang, and Y. Ding, "Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system," Particuology, vol.15, pp.39-44, 2014. DOI: 10.1016/j.partic.2013.08.003
  2. Y. Deng, W. Zhu, Y. Wang, and Y. Shi, "Enhanced performance of solar-driven photovoltaic-thermoelectric hybrid system in an integrated design," Solar energy, vol.88, pp.182-191, 2013. DOI: 10.1016/J.SOLENER.2012.12.002
  3. E. Yin, Q. Li, and Y. Xuan, "Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system," Energy Conversion and Management, vol.143, pp.188-202, 2017. DOI: 10.1016/j.enconman.2017.04.004
  4. Y. Park et al., "Performance of Hybrid Energy Devices Consisting of Photovoltaic Cells and Thermoelectric Generators," ACS applied materials & interfaces, vol.12, no.7, pp.8124-8129, 2020. DOI: 10.1021/acsami.9b18652
  5. S. Soltani, A. Kasaeian, H. Sarrafha, and D. Wen, "An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application," Solar Energy, vol.155, pp.1033-1043, 2017. DOI: 10.1016/j.solener.2017.06.069
  6. W. Gu, T. Ma, A. Song, M. Li, and L. Shen, "Mathematical modelling and performance evaluation of a hybrid photovoltaic-thermoelectric system," Energy Conversion and Management, vol.198, pp.111800, 2019. DOI: 10.1016/j.enconman.2019.111800
  7. J. Kim et al., "Double antireflection coating layer with silicon nitride and silicon oxide for crystalline silicon solar cell," Journal of Electroceramics, vol.30, no.1, pp.41-45, 2013. DOI: 10.1007/s10832-012-9710-y
  8. V. J. Fesharaki, M. Dehghani, J. J. Fesharaki, and H. Tavasoli, "The effect of temperature on photovoltaic cell efficiency," pp.20-21, 2011.
  9. P. Singh and N. M. Ravindra, "Temperature dependence of solar cell performance-an analysis," Solar energy materials and solar cells, vol.101, pp.36-45, 2012. DOI: 10.1016/j.solmat.2012.02.019