DOI QR코드

DOI QR Code

A Study on the Usage Behavior of Public Library Website through an Analysis of Web Traffic

웹 트래픽 분석을 통한 공공도서관 웹사이트 이용행태에 관한 연구

  • 강문실 (중앙대학교 대학원) ;
  • 김성희 (중앙대학교 사회과학대학 문헌정보학과)
  • Received : 2021.11.27
  • Accepted : 2021.12.15
  • Published : 2021.12.30

Abstract

The purpose of this study is to analyze an usage behavior for the public library website through web traffic. For this purpose, using Google Analytics and growth hacking technique, the data of A public library website log was analyzed for three months from August 1, 2021 to October 31, 2021. As a result of the study, the young age group of 18-24 years old and 25-34 years old recorded a high rate of new member registration, & it was found that the inflow rate through SNS was high for external inflows. As a result of analysis for the access rate by time, it was found that the time with the highest inflow rate was between 10 am and 11 am both on Wednesday and Friday. As a access channel, the access rate using mobile (64.90%) was quite high, but at the same time, the bounce rate (27.20%) was higher than the average (24.93%), & the rate of duration time (4 minutes 33 seconds) was lower than thee average (5 minutes 22 seconds). Finally, it was found that the utilization rate of reading program events and online book curation service, which the library focuses on producing and promoting, is very low. These research results can be used as basic data for future improvement of public library websites.

본 연구의 목적은 공공도서관 웹트래픽을 분석함으로써 공공도서관 웹사이트 이용행태를 분석하는 데 있다. 이를 위해 구글애널리틱스와 그로스해킹 기법을 이용하여 A 공공도서관 웹사이트 로그를 2021년 8월 1일부터 10월 31일까지 3개월간 웹 트래픽을 분석하였다. 연구결과 18-24세, 25-34세의 젊은 연령에서 신규회원 가입이 높은 결과를 기록하였고, 외부 유입에서는 SNS를 통한 유입율이 높은 것으로 나타났다. 요일 및 시간대별 접속율을 분석한 결과 가장 유입율이 많은 시간대는 수요일-금요일 사이의 오전 10시-11시 사이인 것으로 나타났다. 접속매체로는 모바일(64.90%)을 이용한 접속율이 상당히 높았지만 그와 동시에 이탈율(27.20%)이 평균(24.93%)보다 높고, 체류율(4분 33초)은 평균(5분 22초) 이하로 측정되었다. 마지막으로 도서관에서 주력하여 제작 및 홍보하고 있는 독서문화 행사나 온라인 북큐레이션의 이용율은 매우 저조한 것으로 나타났다. 이러한 연구결과는 미래의 공공도서관 웹사이트 개선을 위한 기초자료로 활용될 수 있을 것이다.

Keywords

References

  1. Hong, Y. & Kim, S. (2015). A study on users' behavior of medical library website using big data. Proceedings of the Korean Library and Information Science Society Conference, 197-205.
  2. Kim, D. & Lim, Y. (2014). Research in the direction of improvement of the web site utilizing google analytics. Cartoon and Animation Studies. Korean Society of Cartoon Animation Studies, 36, 553-572. http://dx.doi.org/10.7230/KOSCAS.2014.36.553
  3. Kim, D. (2018). Google Analytics: How to Use it in Practice. Seoul: Digital Books.
  4. Kim, H. H. (2006). A Study on User Satisfaction with Public Library Websites. Master's thesis, Yonsei University.
  5. Ko, J. M., Seo, J., & Kim, W. (2005). Analysis of web log for e-CRM on B2B of the make-to-order company. IE interfaces, 18(2), 205-220.
  6. Lee, H. E. (2015). (A) Study of User Behavior of Archive Using Web Analytics. Master's thesis, Myong Ji University.
  7. Lee, S. & Chang, W. (2019). A study on user behavior of university library website based big data: focusing on the library of C university. Journal of the Korean Society for Information Management, 36(3), 149-174. https://doi.org/10.3743/KOSIM.2019.36.3.149
  8. Lee, T. (2020). Digital Marking Using Google Analytics. Seoul: Digital Books.
  9. Noh, Y., Kang, P., & Kim, Y. (2020). A study on the activation measures of library's online services to overcome COVID-19. Journal of Korean Library and Information Science Society, 51(4), 185-210. http://dx.doi.org/10.16981/kliss.51.4.202012.185
  10. Oh, J., Kim, J., & Kim, J. (2011). A study on the development of realtime online maketing system using web log analytics. Journal of Society for e-Business Studies, 16(3), 130-138. https://doi.org/10.7838/JSEBS.2011.16.3.249
  11. Park, Y. (2018). Study of Growth Hacking Strategy for the Digital Transformation of the Traditional Industry: Focused on the Furniture Industry, Master's thesis, Yosei University.
  12. Yoon, H. (2015). The contribution strategy of public library to local cultural development in Korea. Journal of Korean Library and Information Science Society, 46(4), 1-20. https://doi.org/10.16981/kliss.46.201512.1
  13. Alhlou, F., Asif, S., & Fettman, E. (2016). Google analytics breakthrough: From zero to business impact. 김정인 옮김. (2017). 구글애널리틱스 완벽 가이드: 설치부터 비즈니스 분석까지 아우르는. 파주: 위키북스.
  14. Barba, I., Cassidy, R., Leon, E. D., & Williams, B. J. (2013). Web analytics reveal user behavior: TTU libraries' experience with google analytics. Journal of Web Librarianship, 7(4), 389-400. https://doi.org/10.1080/19322909.2013.828991
  15. Clifton, B. (2010). Advanced Web Metrics with Google Analytics. 박종채, 이세현 옮김. (2013). 구글애널리틱스: 웹 로그 분석의 시작과 끝. 의왕: 에이콘출판.
  16. Ellis, S. & Morgan, B. (2017). Hacking growth: How today's fastest-growing companies drive breakout success. 이영구, 이영래 옮김. (2017). 진화된 마케팅 그로스해킹: 프로세스와 실행전략 바이블. 고양: 골든어페어.
  17. Law, R., Wong, E., Buhalis, D., & Hatter, R. (2018). Time-varying browsing behavior of hotelwebsite users. e-Review of Tourism Research, 9.
  18. Shevchenko, L. (2020). Analysis of library website users' behavior to optimize virtual information and library services. Journal of Information Science Theory and Practice, 8(1), 45-55. https://doi.org/10.1633/JISTaP.2020.8.1.4
  19. Vecchione, A., Brown, D., Allen, E., & Baschnagel, A. (2016). Tracking user behavior with google analytics events on an academic library web site. Journal of Web Librarianship, 10(3), 161-175. https://doi.org/10.1080/19322909.2016.1175330