DOI QR코드

DOI QR Code

Preparation and Characteristics of Embroidered Circuit Board Using Conductive Yarns for e-Textile Applications

전도사를 사용한 자수 기반 회로기판 제조 및 특성에 대한 연구

  • Jeong, Cheon Hee (Korea Dyeing & Finishing Technology Institute(DYETEC)) ;
  • Park, Hyun Ju (Korea Institute of Footwear & Leather Techhology) ;
  • Kang, Seon Gyeong (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kim, Ah Rong (Korea Dyeing & Finishing Technology Institute(DYETEC)) ;
  • Park, Jong S. (School of Chemical Engineering, Pusan National University)
  • 정천희 (DYETEC연구원 부산섬유소재진흥센터) ;
  • 박현주 (한국신발피혁연구원) ;
  • 강선경 (부산대학교 유기소재시스템공학과) ;
  • 김아롱 (DYETEC연구원 부산섬유소재진흥센터) ;
  • 박종승 (부산대학교 응용화학공학부)
  • Received : 2021.11.02
  • Accepted : 2021.12.08
  • Published : 2021.12.31

Abstract

This study aims to evaluate the durability of a fiber-based module subjected to repeated stretch/release cyclic deformation. The fiber-based module connects an LED and a conductive yarn via the embroidery technique. For this purpose, different stitch pattern parameters, such as the stitch shape, length, and spacing, were applied, and the resistance changes were measured according to repeated tensile deformations. Among the three stitch patterns (i.e., straight, zigzag, and wavy), the zigzag pattern showed a resistance of 30.7 Ω/cm per unit embroidery length, and had the lowest resistance change even after repeated stretching recovery deformations. Based on the experimental results, a fiber-based module was manufactured by connecting an LED lamp to a zigzag pattern with a resistance of 11.9 Ω/cm and resistance change of approximately 18%. During elastic deformation, the LED was operated for 1200 cycles. The results indicate the potential applications in the production of smart clothing that requires elastic recovery.

Keywords

Acknowledgement

본 연구는 산업통상자원부와 한국산업기술진흥원(KIAT)이 지원하는 지역혁신클러스터육성(R&D) 국가혁신융복합단지지원사업(과제번호 P0015298)으로 수행된 연구결과입니다.

References

  1. I. Gehrke, V. Tenner, V. Lutz, D. Schmelzeisen, and T. Gries, "Smart Textiles Production: Overview of Materials, Sensor and Production Technologies for Industrial Smart Textiles", MDPI, 2019.
  2. J. Ahn, "Development of Automated Manufacturing Method for Textile Circuit Using Machine Vision and Embroidery", Dissertation, Seoul National University, 2021.
  3. J. Rantanen, J. Impio, T. Karinsalo, M. Malmivaara, A. Reho, M. Tasanen, and J. Vanhala, "Smart Clothing Prototype for the Arctic Environment", Pers. Ubiquitous Comput., 2002, 6, 3-16. https://doi.org/10.1007/s007790200001
  4. T. Kirstein, "Multidisciplinary Know-how for Smart-textiles Developers", Woodhead Pulishing, 2013, pp.1-25.
  5. T. Agcayazi, K. Chatterjee, A. Bozkurt, and T. K. Ghosh, "Flexible Interconnects for Electronic Textiles", Adv. Mater. Technol., 2018, 3, 1700277. https://doi.org/10.1002/admt.201700277
  6. L. M. Castano and A. B. Flatau, "Smart Fabric Sensors and e-textile Technologies: A Review", Smart Mater Struct, 2014, 23, 053001. https://doi.org/10.1088/0964-1726/23/5/053001
  7. B. Selm, B. Bischoff, and R. Seidl, "Embroidery and Smart Textiles", Smart Fibres, Fabr. Clothing, 2001, 1, 218-225.
  8. J. Hahner, C. Hinuber, A. Breier, T. Siebert, H. Brunig, and G. Heinrich, "Adjusting the Mechanical Behavior of Embroidered Scaffolds to Lapin Anterior Cruciate Ligaments by Varying the Thread Materials", Text. Res. J., 2015, 85, 1431-1444. https://doi.org/10.1177/0040517514566107
  9. I. G. Trindade, J. Machado da Silva, R. Miguel, M. Pereira, J. Lucas, L. Oliveira, B. Valentim, J. Barreto, and M. Santos Silva, "Design and Evaluation of Novel Textile Wearable Systems for the Surveillance of Vital Signals", Sensors, 2016, 16, 1573. https://doi.org/10.3390/s16101573
  10. T. Linz, E. P. Simon, and H. Walter, "Modeling Embroidered Contacts for Electronics in Textiles", J. Text. Inst., 2012, 103, 644-653. https://doi.org/10.1080/00405000.2011.597568
  11. M. Martinez-Estrada, B. Moradi, R. Fernandez-Garcia, and I. Gil, "Impact of Conductive Yarns on an Embroidery Textile Moisture Sensor", Sensors, 2019, 19, 1004. https://doi.org/10.3390/s19051004
  12. E. Strazdiene, P. Blazevic, A. Vegys, and K. Dapkuniene, "New Tendencies of Wearable Electronics Application in Smart Clothing", Elektron. Elektrotech, 2007, 73, 21-24.
  13. O. Atalay and W. R. Kennon, "Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties", Sensors, 2014, 14, 4712-4730. https://doi.org/10.3390/s140304712
  14. F. Axisa, D. Brosteaux, E. De Leersnyder, F. Bossuyt, J. Vanfleteren, B. Hermans, and R. Puers, "Biomedical Stretchable Sytems Using Mid Based Stretchable Electronics Technology", IEEE, 2007, 1, 5687-5690.
  15. E. Lee and J. Kim, "A Study on Practical Function of Neoprene Fabric Design in wearable Device for Golf Posture Training: Focus on Assistance Band with Arduino/Flex Sensor", J. Fashion Business, 2014, 18, 1-14.
  16. D. Jung, S. Y. Kim, A. Sohn, B. Y. Jeon, S. Y. Kim, and J. Y. Lee, "Regional Skin Maximal Elongation Rate for Appling e-textiles to Tight-fit Clothing", Korean J. Community Living Sci., 2017, 28, 365-375. https://doi.org/10.7856/kjcls.2017.28.3.365
  17. J. Park and J. Kim, "The Development of Fitted Sports Wear for Safety and Protection Using Conductive Yarn Embroidery", J. Fashion Business, 2019, 23, 156-169. https://doi.org/10.12940/JFB.2019.23.2.156
  18. Y. Atwa, N. Maheshwari, and I. A. Goldthorpe, "Silver Nanowire Coated Threads for Electrically Conductive Textiles", J. Mater. Chem. C Mater., 2015, 3, 3908-3912.