DOI QR코드

DOI QR Code

Research Trends on Emotional Labor in Korea using text mining

텍스트마이닝을 활용한 감정노동 연구 동향 분석

  • 조경원 (고신대학교 의료경영학부) ;
  • 한나영 (고신대학교 의료경영학부)
  • Received : 2021.09.15
  • Accepted : 2021.11.21
  • Published : 2021.12.30

Abstract

Research has been conducted in many fields to identify research trends using text mining, but in the field of emotional labor, no research has been conducted using text mining to identify research trends. This study uses text mining to deeply analyze 1,465 papers at the Korea Citation Index (KCI) from 2004 to 2019 containing the subject word 'emotional labor' to understand the trend of emotional labor researches. Topics were extracted by LDA analysis, and IDM analysis was performed to confirm the proportion and similarity of the topics. Through these methods, an integrated analysis of topics was conducted considering the usefulness of topics with high similarity. The research topics are divided into 11 categories in descending order: stress of emotional labor (12.2%), emotional labor and social support (12.0%), customer service workers' emotional labor (10.9%), emotional labor and resilience (10.2%), emotional labor strategy (9.2%), call center counselor's emotional labor (9.1%), results of emotional labor (9.0%), emotional labor and job exhaustion (7.9%), emotional intelligence (7.1%), preliminary care service workers' emotional labor (6.6%), emotional labor and organizational culture (5.9%). Through topic modeling and trend analysis, the research trend of emotional labor and the academic progress are analyzed to present the direction of emotional labor research, and it is expected that a practical strategy for emotional labor can be established.

텍스트마이닝을 이용하여 연구동향을 파악하는 연구가 많은 분야에서 이루어지고 있으나 감정노동 분야에서는 텍스트마이닝을 사용하여 연구 동향을 파악한 연구는 없는 실정이다. 본 연구는 텍스트마이닝을 이용하여 2004년부터 2019년까지 한국연구재단의 한국학술지인용색인(KCI)에서 '감정 노동'이라는 주제어가 포함된 1,465건의 검색된 논문을 심층적으로 분석하여 감정노동 연구 동향을 파악하고자 한다. LDA분석으로 주제들을 추출하고, 토픽의 비중과 유사도를 확인하기 위해 IDM분석을 실시하였다. 이를 통해 유사도가 높은 토픽들의 의미유용성을 고려하여 토픽의 통합분석을 실시하였다. 연구토픽은 11개로 구분되며, 감정노동의 스트레스(12.2%), 감정노동과 사회적 지지(12.0%), 고객서비스 종사자의 감정노동(10.9%), 감정노동과 회복탄력성(10.2%), 감정노동전략(9.2%), 콜센터상담사의 감정노동(9.1%), 감정노동의 결과(9.0%), 감정노동과 직무소진(7.9%), 감성지능(7.1%), 예비돌봄서비스 종사자의 감정노동(6.6%), 감정노동과 조직문화(5.9%) 순의 비중으로 나타났다. 토픽모델링과 트렌드분석을 통하여 감정노동의 연구동향과 학문적 추이를 분석함으로써 감정노동 연구의 나아갈 방향을 제시하고자 하며 감정노동에 관한 실무적인 전략을 수립할 수 있기를 기대한다.

Keywords

Acknowledgement

이 논문은 2020년 고신대학교 교내연구비에 의하여 연구되었음

References

  1. Blei, D. M., Ng, A. Y., & Jordan, M. I.(2003), Latent dirichlet allocation, Journal of machine Learning research, 3, 993-1022.
  2. Brotheridge, C., & Grandey, A.(2002), Emotional labor and burnout: Comparing two perspectives of "people work", Journal of Vocational Behavior, 60, 17-39. https://doi.org/10.1006/jvbe.2001.1815
  3. Brotheridge, C., & Lee, R. T.(2003), Development and validation of the emotional labour scale, Journal of Occupational and Organizational Psychology, 76, 365-379. https://doi.org/10.1348/096317903769647229
  4. Cha, Y. J., Lee, J. H., Choi, J. E., and Kim, H. W. (2015). A Study on the Thermal Stability of Carpet in Air Condition, Knowledge Management Research, 16(4), 69-87. https://doi.org/10.15813/kmr.2015.16.4.005
  5. Ckoi, H. S., Kim, Y. S., Cho, H. J., and Kang, J. Y. (2016). A Comparative Analysis of Success Factors Between Social Commerce and Multichannel Distribution Using Text Mining Techniques, The Korean Journal of Bigdata, 1(2), 35-44.
  6. Diefendorff, J. M., Croyle, M. H., & Gosserand, R. H.(2005), The dimensionality and antecedents of emotional labor strategies, Journal of Vocational Behavior, 66, 339-357. https://doi.org/10.1016/j.jvb.2004.02.001
  7. Guo, Y., Barnes, S. J., & Jia, Q.(2017), Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation, Tourism Management, 59, 467-483. https://doi.org/10.1016/j.tourman.2016.09.009
  8. Heo, C. G. (2014). The Moderating Role of Deep Acting to Emotional Exhaustion in Service Work: The Perspective of Cognitive Dissonance Theory, Journal of The Korean Data Analysis Society, 16(5), 2589-2604.
  9. Hochschild, A. R.(1983), The managed heart, Berkeley & Los Angeles, CA: University of California Press.
  10. Kim, H. J., Lee, T. H., Ryu, S. E., and Kim, N. R. (2018). A Study on Text Mining Methods to Analyze Civil Complaints: Structured Association Analysis, Journal of the Korea Industrial Information Systems Research, 23(3), 13-24. https://doi.org/10.9723/JKSIIS.2018.23.3.013
  11. Kim, J. H., and Kim, Y. J. (2021). Analysis of Research Trends in Sales Management Using Topic Modeling, Journal of Marketing Research, 36(1), 99-120.
  12. Kim, Y. E., and Chung, S. W. (2021). Supervisor Ostracism and Emotional Labor: The Path Through Anxiety, Journal of Organization and Management, 45(1), 1-25.
  13. Lee, B. K. (2020). Study on Influence of Emotional Labor, Job Stress and Job Burnout on Turnover Intention: Focused on Online Shopping Malls' Call Center Workers, Ph. D. Thesis, Graduate School of Hoseo University.
  14. Lee, H., and Kim, J. H. (2019). An Analysis on Research Trends of Emotional Labor in Business Research and Future Research Directions, Journal of Digital Convergence, 17(5), 65-75. https://doi.org/10.14400/JDC.2019.17.5.065
  15. Lee, J. Y., Chae, J. H., and Oh, H. S. (2021). Emotional Labor Profiles and Job Satisfaction and/or Depression: Utilizing a Person-Centered Approach in the Private Company Call Center Context, Journal of Organization and Management, 45(1), 147-178.
  16. Lee, N. Y., Kim, J. H., and Moon, H. J. (2019). Exploration of Emotional Labor Research Trends in Korea through Keyword Network Analysis, Journal of Convergence for Information Technology, 9(3), 68-74. https://doi.org/10.22156/CS4SMB.2019.9.3.068
  17. Lee, T. W. (2020). A Study on Analysis of Topic Modeling using Customer Reviews based on Sharing Economy: Focusing on Sharing Parking, Journal of the Korea Industrial Information Systems Research, 25(3), 39-51. https://doi.org/10.9723/JKSIIS.2020.25.3.039
  18. Lee. J. W. (2020). The Antecedents and Consequence of Emotion Regulation Strategies for Emotional Labor, Journal of Organization and Management, 44(4), 49-70.
  19. Mitchell, R.(2015), Web scraping with python: Collecting data from the modern web, 1st edition, Sebastopol, CA: O'Reilly Media, Inc.
  20. Morris, J. A., & Feldman, D. C.(1996), The dimensions, antecedents, and consequences of emotional labor, Academy of Management Review, 21, 986-1010. https://doi.org/10.5465/AMR.1996.9704071861
  21. Park, E. A., Son, H. I., and Lee, C. S. (2014). Research Trends in Emotional Labor in the Hospitality Industry: Content Analysis of Korea Journal, International Journal of Tourism Management and Sciences, 29(4), 291-307.
  22. Park, S. K., and Lee, B. G. (2019). A Text Mining Approach to the Analysis of Issues for Accommodation Sharing Business, Journal of Tourism & Leisure Research, 31(7), 209-229. https://doi.org/10.31336/jtlr.2019.7.31.7.209
  23. Ratsgo(2017), Topic Modeling, LDA, https://ratsgo.github.io/from frequencytosemantics/2017/06/01/LDA/.
  24. Shi, Z., Lee, G. M., & Whinston, A. B.(2016), Toward a better measure of business proximity: Topic modeling for industry intelligence, MIS Quarterly, 40(4), 1035-1056. https://doi.org/10.25300/MISQ/2016/40.4.11
  25. Shin, M. S., and Cho, K. W. (2019). Analysis on Topic Modeling and Trend of Journal of Speech-Language & Hearing Disorders using Text Mining: (2002-2018), Journal of speech-language & hearing disorders, 28(3), 81-91. https://doi.org/10.15724/jslhd.2019.28.3.081