DOI QR코드

DOI QR Code

Bioassay-coupled LC-QTOF MS/MS to Characterize Constituents Inhibiting Nitric Oxide Production of Thuja orientalis

  • Received : 2021.11.18
  • Accepted : 2021.12.24
  • Published : 2021.12.31

Abstract

The ethyl acetate fractions prepared from the leaves of Thuja orientalis significantly inhibited nitric oxide (NO) production in lipopolysaccharide-stimulated BV2 microglial cells. According to bioassay-coupled LC-QTOF MS/MS, the components near 22 and 25 mins in the mass chromatogram highly inhibited NO production and were expected to be labdane diterpenes, and the active components were characterized via further isolation. The results of the NO production inhibitory assay of the isolated compounds correlated well with the results of bioassay-coupled LC-QTOF MS/MS. Among the identified constituents, NO production inhibitory activities of 16-hydroxy-labda-8(17),13-diene-15,19-dioic acid butenolide (2) and 15-hydroxypinusolidic acid (3) were newly reported. Taken together, these results demonstrated that LC-QTOF MS/MS coupled with NO production inhibition assay was a powerful tool for accurately predicting new anti-inflammatory constituents in the extracts from natural products. Moreover, it provided a potential basis for broadening the application of bioassay-coupled LC-QTOF MS/MS in natural product research.

Keywords

Acknowledgement

This research was supported by a National Research Foundation of Korea grant funded by the Korean Government (NRF-2017R1A2B4003403, NRF-2019R1A6A1A03031807 and NRF-2021R1A2C1093814).

References

  1. Srivastava, P.; Kumar, P.; Singh, D.; Singh, V. K. Adv. Life Sci. 2012, 2, 17-20. https://doi.org/10.5923/j.als.20120202.04
  2. Koo, K. A.; Sung, S. H.; Kim, Y. C. Chem. Pharm. Bull. 2002, 50, 834-836. https://doi.org/10.1248/cpb.50.834
  3. Asili, J.; Lambert, M.; Ziegler, H. L.; Staerk, D.; Sairafianpour, M.; Witt, M.; Asghari, G.; Ibrahimi, I. S.; Jaroszewski, J. W. J. Nat. Prod. 2004, 67, 631-637. https://doi.org/10.1021/np034033e
  4. Kim, K. H.; Moon, E.; Kim, S. Y.; Choi, S. U.; Son, M. W.; Choi, S. Z.; Lee, K. R. Planta Med. 2013, 79, 1680-1684. https://doi.org/10.1055/s-0033-1350952
  5. Kim, J. Y.; Kim, H. J.; K im, S. M .; P ark, K . R.; Jang, H . J.; Lee, E . H.; Jung, S. H.; Ahn, K. S. J. Ethnopharmacol. 2011, 133, 687-695. https://doi.org/10.1016/j.jep.2010.10.051
  6. Jung, H. W.; Kang, S. Y.; Park, K. H.; Oh, T. W.; Jung, J. K.; Kim, S. H .; C hoi, D. J .; P ark, Y. K. Am. J. Chin. Med. 2013, 41, 99-117. https://doi.org/10.1142/S0192415X13500080
  7. Choi, Y.; Moon, A.; Kim, Y. C. Int. Immunopharmacol. 2008, 8, 548-555. https://doi.org/10.1016/j.intimp.2007.12.010
  8. Fan, S.-Y.; Zeng, H.-W.; Pei, Y.-H.; Li, L.; Ye, J.; Pan, Y.-X.; Zhang, J.-G.; Yuan, X.; Zhang, W.-D. J. Ethnopharmacol. 2012, 141, 647-652. https://doi.org/10.1016/j.jep.2011.05.019
  9. Shin, H.; Chung, H.; Park, B.; Lee, K. Y. Nat. Prod. Sci. 2016, 22, 64-69. https://doi.org/10.20307/nps.2016.22.1.64
  10. Stewart, A. J.; Mullen, W.; Crozier, A. Mol. Nutr. Food Res. 2005, 49, 52-60. https://doi.org/10.1002/mnfr.200400064
  11. Yang, H. H.; Oh, K. E.; Jo, Y. H.; Ahn, J. H.; Liu, Q.; Turk, A.; Jang, J . Y .; H wang, B . Y .; L ee, K. Y.; L ee, M . K. Bioorg. Med. Chem. 2018, 26, 509-515. https://doi.org/10.1016/j.bmc.2017.12.011
  12. Wang, C.; He, L.; Wang, N.; Liu, F. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 3019-3024. https://doi.org/10.1016/j.jchromb.2009.07.022
  13. Park, S.; Shin, H.; Park, Y.; Choi, I.; Park, B.; Lee, K. Y. Bioorg. Chem. 2018, 80, 57-63. https://doi.org/10.1016/j.bioorg.2018.05.023
  14. Gonzalez-Scarano, F.; Baltuch, G. Annu. Rev. Neurosci. 1999, 22, 219-240. https://doi.org/10.1146/annurev.neuro.22.1.219
  15. Moon, D.-O.; Choi, Y. H.; Kim, N.-D.; Park, Y.-M.; Kim, G.-Y. Int. Immunopharmacol. 2007, 7, 506-514. https://doi.org/10.1016/j.intimp.2006.12.006
  16. Lau, F. C.; Bielinski, D. F.; Joseph, J. A. J. Neurosci. Res. 2007, 85, 1010-1017. https://doi.org/10.1002/jnr.21205
  17. Rothwell, N. J.; Luheshi, G. N. Trends Neurosci. 2000, 23, 618-625. https://doi.org/10.1016/S0166-2236(00)01661-1
  18. Korhonen, R.; Lahti, A.; Kankaanranta, H.; Moilanen, E. Curr. Drug Targets Inflamm. Allergy 2005, 4, 471-479. https://doi.org/10.2174/1568010054526359
  19. Lucas, S. M.; Rothwell, N. J.; Gibson, R. M. Br. J. Pharmacol. 2006, 147, S232-S240. https://doi.org/10.1038/sj.bjp.0706400
  20. Fang, J.-M.; Hsu, K.-C.; Cheng, Y.-S. Phytochemistry 1989, 28, 1173-1175. https://doi.org/10.1016/0031-9422(89)80203-1
  21. Chiang, Y. M.; Liu, H. K.; Lo, J. M.; Chien, S. C.; Chan, Y. F.; Lee, T. H .; Su, J . K.; Kuo, Y. H. J. Chin. Chem. Soc. 2003, 50, 161-166. https://doi.org/10.1002/jccs.200300022
  22. Sa, N. H.; Tam, N. T.; Anh, N. T. H.; Quan, T. D.; Thien, D. D.; Phong, D. T.; Sung, T. V.; Thuy, T. T. Nat. Prod. Res. 2018, 32, 341-345. https://doi.org/10.1080/14786419.2017.1350672
  23. He, F.; Aisa, H.; Shakhidoyatov, K. M. Chem. Nat. Compd. 2012, 48, 685-686. https://doi.org/10.1007/s10600-012-0350-x
  24. Gil Archila, E.; Cuca Suarez, L. E. Nat. Prod. Res. 2018, 32, 195-201. https://doi.org/10.1080/14786419.2017.1344663
  25. Park, S.-H.; Kim, H. J.; Yim, S.-H.; Kim, A.-R.; Tyagi, N.; Shen, H.; Kim, K. K.; Shin, B. A.; Jung, D.-W.; Williams, D. R. J. Nat. Prod. 2014, 77, 2389-2396. https://doi.org/10.1021/np500231g
  26. Masuda, T.; Someya, T.; Fujimoto, A. Biosci. Biotechnol. Biochem. 2010, 74, 212-215. https://doi.org/10.1271/bbb.90697
  27. Nakanishi, T.; Iida, N.; Inatomi, Y.; Murata, H.; Inada, A.; Murata, J.; Lang, F. A.; Iinuma, M.; Tanaka, T. Phytochemistry 2004, 65, 207-213. https://doi.org/10.1016/j.phytochem.2003.10.025