DOI QR코드

DOI QR Code

Human Endogenous Retroviruses as Gene Expression Regulators: Insights from Animal Models into Human Diseases

  • Durnaoglu, Serpen (Department of Life Sciences, College of Natural Sciences, Hanyang University) ;
  • Lee, Sun-Kyung (Department of Life Sciences, College of Natural Sciences, Hanyang University) ;
  • Ahnn, Joohong (Department of Life Sciences, College of Natural Sciences, Hanyang University)
  • 투고 : 2021.12.04
  • 심사 : 2021.12.07
  • 발행 : 2021.12.31

초록

The human genome contains many retroviral elements called human endogenous retroviruses (HERVs), resulting from the integration of retroviruses throughout evolution. HERVs once were considered inactive junk because they are not replication-competent, primarily localized in the heterochromatin, and silenced by methylation. But HERVs are now clearly shown to actively regulate gene expression in various physiological and pathological conditions such as developmental processes, immune regulation, cancers, autoimmune diseases, and neurological disorders. Recent studies report that HERVs are activated in patients suffering from coronavirus disease 2019 (COVID-19), the current pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. In this review, we describe internal and external factors that influence HERV activities. We also present evidence showing the gene regulatory activity of HERV LTRs (long terminal repeats) in model organisms such as mice, rats, zebrafish, and invertebrate models of worms and flies. Finally, we discuss several molecular and cellular pathways involving various transcription factors and receptors, through which HERVs affect downstream cellular and physiological events such as epigenetic modifications, calcium influx, protein phosphorylation, and cytokine release. Understanding how HERVs participate in various physiological and pathological processes will help develop a strategy to generate effective therapeutic approaches targeting HERVs.

키워드

과제정보

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2021R1F1A1049211) and by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-01373, Artificial Intelligence Graduate School Program [Hanyang University]). We sincerely apologize to our colleagues in case we unwittingly omit their valuable works in this review.

참고문헌

  1. Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al. (2000). The genome sequence of Drosophila melanogaster. Science 287, 2185-2195. https://doi.org/10.1126/science.287.5461.2185
  2. Ahmed, M.B., Islam, S.U., and Lee, Y.S. (2020). Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Anim. Cells Syst. (Seoul) 24, 44-52. https://doi.org/10.1080/19768354.2020.1726811
  3. Alqahtani, S., Promtong, P., Oliver, A.W., He, X.T., Walker, T.D., Povey, A., Hampson, L., and Hampson, I.N. (2016). Silver nanoparticles exhibit size-dependent differential toxicity and induce expression of syncytin-1 in FA-AML1 and MOLT-4 leukaemia cell lines. Mutagenesis 31, 695-702. https://doi.org/10.1093/mutage/gew043
  4. Anand, D., Colpo, G.D., Zeni, G., Zeni, C.P., and Teixeira, A.L. (2017). Attention-deficit/hyperactivity disorder and inflammation: what does current knowledge tell us? A systematic review. Front. Psychiatry 8, 228.
  5. Antony, J.M., DesLauriers, A.M., Bhat, R.K., Ellestad, K.K., and Power, C. (2011). Human endogenous retroviruses and multiple sclerosis: innocent bystanders or disease determinants? Biochim. Biophys. Acta 1812, 162-176. https://doi.org/10.1016/j.bbadis.2010.07.016
  6. Attig, J., Young, G.R., Hosie, L., Perkins, D., Encheva-Yokoya, V., Stoye, J.P., Snijders, A.P., Ternette, N., and Kassiotis, G. (2019). LTR retroelement expansion of the human cancer transcriptome and immunopeptidome revealed by de novo transcript assembly. Genome Res. 29, 1578-1590. https://doi.org/10.1101/gr.248922.119
  7. Bae, S., Kim, M.K., Kim, H.S., and Moon, Y.A. (2020). Arachidonic acid induces ER stress and apoptosis in HT-29 human colon cancer cells. Anim. Cells Syst. (Seoul) 24, 260-266. https://doi.org/10.1080/19768354.2020.1813805
  8. Balada, E., Ordi-Ros, J., and Vilardell-Tarres, M. (2009). Molecular mechanisms mediated by human endogenous retroviruses (HERVs) in autoimmunity. Rev. Med. Virol. 19, 273-286. https://doi.org/10.1002/rmv.622
  9. Balestrieri, E., Arpino, C., Matteucci, C., Sorrentino, R., Pica, F., Alessandrelli, R., Coniglio, A., Curatolo, P., Rezza, G., Macciardi, F., et al. (2012). HERVs expression in autism spectrum disorders. Plos One 7, e48831. https://doi.org/10.1371/journal.pone.0048831
  10. Balestrieri, E., Cipriani, C., Matteucci, C., Benvenuto, A., Coniglio, A., ArgawDenboba, A., Toschi, N., Bucci, I., Miele, M.T., Grelli, S., et al. (2019). Children with autism spectrum disorder and their mothers share abnormal expression of selected endogenous retroviruses families and cytokines. Front. Immunol. 10, 2244. https://doi.org/10.3389/fimmu.2019.02244
  11. Balestrieri, E., Minutolo, A., Petrone, V., Fanelli, M., Iannetta, M., Malagnino, V., Zordan, M., Vitale, P., Charvet, B., Horvat, B., et al. (2021). Evidence of the pathogenic HERV-W envelope expression in T lymphocytes in association with the respiratory outcome of COVID-19 patients. EBioMedicine 66, 103341. https://doi.org/10.1016/j.ebiom.2021.103341
  12. Bannert, N. and Kurth, R. (2004). Retroelements and the human genome: new perspectives on an old relation. Proc. Natl. Acad. Sci. U. S. A. 101(Suppl 2), 14572-14579. https://doi.org/10.1073/pnas.0404838101
  13. Bartkowska, K., Paquin, A., Gauthier, A.S., Kaplan, D.R., and Miller, F.D. (2007). Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development 134, 4369-4380. https://doi.org/10.1242/dev.008227
  14. Bergallo, M., Galliano, I., Dapra, V., Pirra, A., Montanari, P., Pavan, M., Calvi, C., Bertino, E., Coscia, A., and Tovo, P.A. (2019). Transcriptional activity of human endogenous retroviruses in response to prenatal exposure of maternal cigarette smoking. Am. J. Perinatol. 36, 1060-1065. https://doi.org/10.1055/s-0038-1675768
  15. Bergallo, M., Galliano, I., Montanari, P., Gambarino, S., Mareschi, K., Ferro, F., Fagioli, F., Tovo, P.A., and Ravanini, P. (2015). CMV induces HERV-K and HERV-W expression in kidney transplant recipients. J. Clin. Virol. 68, 28-31. https://doi.org/10.1016/j.jcv.2015.04.018
  16. Blomberg, J., Nived, O., Pipkorn, R., Bengtsson, A., Erlinge, D., and Sturfelt, G. (1994). Increased antiretroviral antibody reactivity in sera from a defined population of patients with systemic lupus erythematosus. Arthritis Rheum. 37, 57-66. https://doi.org/10.1002/art.1780370109
  17. Brattas, P.L., Jonsson, M.E., Fasching, L., Nelander Wahlestedt, J., Shahsavani, M., Falk, R., Falk, A., Jern, P., Parmar, M., and Jakobsson, J. (2017). TRIM28 controls a gene regulatory network based on endogenous retroviruses in human neural progenitor cells. Cell Rep. 18, 1-11. https://doi.org/10.1016/j.celrep.2016.12.010
  18. Brodziak, A., Ziolko, E., Muc-Wierzgon, M., Nowakowska-Zajdel, E., Kokot, T., and Klakla, K. (2012). The role of human endogenous retroviruses in the pathogenesis of autoimmune diseases. Med. Sci. Monit. 18, RA80-RA88.
  19. Buckner, J.C., Brown, P.D., O'Neill, B.P., Meyer, F.B., Wetmore, C.J., and Uhm, J.H. (2007). Central nervous system tumors. Mayo Clin. Proc. 82, 1271-1286. https://doi.org/10.4065/82.10.1271
  20. Burns, K.H. (2017). Transposable elements in cancer. Nat. Rev. Cancer 17, 415-424. https://doi.org/10.1038/nrc.2017.35
  21. C. elegans Sequencing Consortium (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012-2018. https://doi.org/10.1126/science.282.5396.2012
  22. Casau, A.E., Vaughan, J.E., Lozano, G., and Levine, A.J. (1999). Germ cell expression of an isolated human endogenous retroviral long terminal repeat of the HERV-K/HTDV family in transgenic mice. J. Virol. 73, 9976-9983. https://doi.org/10.1128/jvi.73.12.9976-9983.1999
  23. Chan, S.M., Sapir, T., Park, S.S., Rual, J.F., Contreras-Galindo, R., Reiner, O., and Markovitz, D.M. (2019). The HERV-K accessory protein Np9 controls viability and migration of teratocarcinoma cells. Plos One 14, e0212970. https://doi.org/10.1371/journal.pone.0212970
  24. Chen-Plotkin, A.S., Lee, V.M.Y., and Trojanowski, J.Q. (2010). TAR DNA-binding protein 43 in neurodegenerative disease. Nat. Rev. Neurol. 6, 211-220. https://doi.org/10.1038/nrneurol.2010.18
  25. Chen, T., Meng, Z., Gan, Y., Wang, X., Xu, F., Gu, Y., Xu, X., Tang, J., Zhou, H., Zhang, X., et al. (2013). The viral oncogene Np9 acts as a critical molecular switch for co-activating β-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia 27, 1469-1478. https://doi.org/10.1038/leu.2013.8
  26. Chen, Y., Yan, Q., Zhou, P., Li, S., and Zhu, F. (2019). HERV-W env regulates calcium influx via activating TRPC3 channel together with depressing DISC1 in human neuroblastoma cells. J. Neurovirol. 25, 101-113. https://doi.org/10.1007/s13365-018-0692-7
  27. Cherkasova, E., Malinzak, E., Rao, S., Takahashi, Y., Senchenko, V.N., Kudryavtseva, A.V., Nickerson, M.L., Merino, M., Hong, J.A., Schrump, D.S., et al. (2011). Inactivation of the von Hippel-Lindau tumor suppressor leads to selective expression of a human endogenous retrovirus in kidney cancer. Oncogene 30, 4697-4706. https://doi.org/10.1038/onc.2011.179
  28. Cho, H., Jang, Y., Park, K.H., Choi, H., Nowakowska, A., Lee, H.J., Kim, M., Kang, M.H., Kim, J.H., Shin, H.Y., et al. (2021). Human endogenous retrovirus-enveloped baculoviral DNA vaccines against MERS-CoV and SARS-CoV2. NPJ Vaccines 6, 37. https://doi.org/10.1038/s41541-021-00303-w
  29. Choe, S., Huh, T.L., and Rhee, M. (2020). Trim45 is essential to the development of the diencephalon and eye in zebrafish embryos. Anim. Cells Syst. (Seoul) 24, 99-106. https://doi.org/10.1080/19768354.2020.1751281
  30. Chung, K.W., Kim, J.S., and Lee, K.S. (2020). A database of Caenorhabditis elegans locomotion and body posture phenotypes for the peripheral neuropathy model. Mol. Cells 43, 880-888. https://doi.org/10.14348/molcells.2020.0178
  31. Chuong, E.B., Elde, N.C., and Feschotte, C. (2016). Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083-1087. https://doi.org/10.1126/science.aad5497
  32. Cipriani, C., Pitzianti, M.B., Matteucci, C., D'Agati, E., Miele, M.T., Rapaccini, V., Grelli, S., Curatolo, P., Sinibaldi-Vallebona, P., Pasini, A., et al. (2018). The decrease in human endogenous retrovirus-H activity runs in parallel with improvement in ADHD symptoms in patients undergoing methylphenidate therapy. Int. J. Mol. Sci. 19, 3286. https://doi.org/10.3390/ijms19113286
  33. Conti, A., Rota, F., Ragni, E., Favero, C., Motta, V., Lazzari, L., Bollati, V., Fustinoni, S., and Dieci, G. (2016). Hydroquinone induces DNA hypomethylation-independent overexpression of retroelements in human leukemia and hematopoietic stem cells. Biochem. Biophys. Res. Commun. 474, 691-695. https://doi.org/10.1016/j.bbrc.2016.05.010
  34. Contreras-Galindo, R., Kaplan, M.H., Leissner, P., Verjat, T., Ferlenghi, I., Bagnoli, F., Giusti, F., Dosik, M.H., Hayes, D.F., Gitlin, S.D., et al. (2008). Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J. Virol. 82, 9329-9336. https://doi.org/10.1128/JVI.00646-08
  35. Contreras-Galindo, R., Lopez, P., Velez, R., and Yamamura, Y. (2007). HIV1 infection increases the expression of human endogenous retroviruses type K (HERV-K) in vitro. AIDS Res. Hum. Retroviruses 23, 116-122. https://doi.org/10.1089/aid.2006.0117
  36. D'Agati, E., Pitzianti, M., Balestrieri, E., Matteucci, C., Sinibaldi Vallebona, P., and Pasini, A. (2016). First evidence of HERV-H transcriptional activity reduction after methylphenidate treatment in a young boy with ADHD. New Microbiol. 39, 237-239.
  37. Dai, L., Del Valle, L., Miley, W., Whitby, D., Ochoa, A.C., Flemington, E.K., and Qin, Z. (2018). Transactivation of human endogenous retrovirus K (HERV-K) by KSHV promotes Kaposi's sarcoma development. Oncogene 37, 4534-4545. https://doi.org/10.1038/s41388-018-0282-4
  38. Dechaumes, A., Bertin, A., Sane, F., Levet, S., Varghese, J., Charvet, B., Gmyr, V., Kerr-Conte, J., Pierquin, J., Arunkumar, G., et al. (2020). Coxsackievirus-B4 infection can induce the expression of human endogenous retrovirus W in primary cells. Microorganisms 8, 1335. https://doi.org/10.3390/microorganisms8091335
  39. Denne, M., Sauter, M., Armbruester, V., Licht, J.D., Roemer, K., and Mueller-Lantzsch, N. (2007). Physical and functional interactions of human endogenous retrovirus proteins Np9 and rec with the promyelocytic leukemia zinc finger protein. J. Virol. 81, 5607-5616. https://doi.org/10.1128/JVI.02771-06
  40. Denner, J. (2016). How active are porcine endogenous retroviruses (PERVs)? Viruses 8, 215. https://doi.org/10.3390/v8080215
  41. Depil, S., Roche, C., Dussart, P., and Prin, L. (2002). Expression of a human endogenous retrovirus, HERV-K, in the blood cells of leukemia patients. Leukemia 16, 254-259. https://doi.org/10.1038/sj.leu.2402355
  42. Dewannieux, M. and Heidmann, T. (2013). Endogenous retroviruses: acquisition, amplification and taming of genome invaders. Curr. Opin. Virol. 3, 646-656. https://doi.org/10.1016/j.coviro.2013.08.005
  43. Dhakal, S. and Lee, Y. (2019). Transient receptor potential channels and metabolism. Mol. Cells 42, 569-578. https://doi.org/10.14348/MOLCELLS.2019.0007
  44. Dinsmore, J.H. and Solomon, F. (1991). Inhibition of MAP2 expression affects both morphological and cell division phenotypes of neuronal differentiation. Cell 64, 817-826. https://doi.org/10.1016/0092-8674(91)90510-6
  45. Dolci, M., Favero, C., Tarantini, L., Villani, S., Bregni, M., Signorini, L., Della Valle, A., Crivelli, F., D'Alessandro, S., Ferrante, P., et al. (2020). Human endogenous retroviruses env gene expression and long terminal repeat methylation in colorectal cancer patients. Med. Microbiol. Immunol. 209, 189-199. https://doi.org/10.1007/s00430-020-00662-6
  46. Doucet-O'Hare, T.T., DiSanza, B.L., DeMarino, C., Atkinson, A.L., Rosenblum, J.S., Henderson, L.J., Johnson, K.R., Kowalak, J., Garcia-Montojo, M., Allen, S.J., et al. (2021). SMARCB1 deletion in atypical teratoid rhabdoid tumors results in human endogenous retrovirus K (HML-2) expression. Sci. Rep. 11, 12893. https://doi.org/10.1038/s41598-021-92223-x
  47. Dunn, C.A., Medstrand, P., and Mager, D.L. (2003). An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon. Proc. Natl. Acad. Sci. U. S. A. 100, 12841-12846. https://doi.org/10.1073/pnas.2134464100
  48. Duperray, A., Barbe, D., Raguenez, G., Weksler, B.B., Romero, I.A., Couraud, P.O., Perron, H., and Marche, P.N. (2015). Inflammatory response of endothelial cells to a human endogenous retrovirus associated with multiple sclerosis is mediated by TLR4. Int. Immunol. 27, 545-553. https://doi.org/10.1093/intimm/dxv025
  49. Durnaoglu, S., Kim, H.S., Ahnn, J., and Lee, S.K. (2020). Human Endogenous Retrovirus K (HERV-K) can drive gene expression as a promoter in Caenorhabditis elegans. BMB Rep. 53, 521-526. https://doi.org/10.5483/BMBRep.2020.53.10.150
  50. Escalera-Zamudio, M. and Greenwood, A.D. (2016). On the classification and evolution of endogenous retrovirus: human endogenous retroviruses may not be 'human' after all. APMIS 124, 44-51. https://doi.org/10.1111/apm.12489
  51. Etchberger, J.F., Lorch, A., Sleumer, M.C., Zapf, R., Jones, S.J., Marra, M.A., Holt, R.A., Moerman, D.G., and Hobert, O. (2007). The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. Genes Dev. 21, 1653-1674. https://doi.org/10.1101/gad.1560107
  52. Firouzi, R., Rolland, A., Michel, M., Jouvin-Marche, E., Hauw, J.J., Malcus-Vocanson, C., Lazarini, F., Gebuhrer, L., Seigneurin, J.M., Touraine, J.L., et al. (2003). Multiple sclerosis-associated retrovirus particles cause T lymphocyte-dependent death with brain hemorrhage in humanized SCID mice model. J. Neurovirol. 9, 79-93. https://doi.org/10.1080/713831337
  53. Fischer, S., Echeverria, N., Cristina, J., and Moreno, P. (2016). Human endogenous retrovirus: their relationship with hematological diseases. J. Leuk. (Los Angel.) 4, 217.
  54. Florl, A.R., Lower, R., Schmitz-Drager, B.J., and Schulz, W.A. (1999). DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br. J. Cancer 80, 1312-1321. https://doi.org/10.1038/sj.bjc.6690524
  55. Frank, O., Giehl, M., Zheng, C., Hehlmann, R., Leib-Mosch, C., and Seifarth, W. (2005). Human endogenous retrovirus expression profiles in samples from brains of patients with schizophrenia and bipolar disorders. J. Virol. 79, 10890-10901. https://doi.org/10.1128/JVI.79.17.10890-10901.2005
  56. Frank, O., Jones-Brando, L., Leib-Mosch, C., Yolken, R., and Seifarth, W. (2006). Altered transcriptional activity of human endogenous retroviruses in neuroepithelial cells after infection with Toxoplasma gondii. J. Infect. Dis. 194, 1447-1449. https://doi.org/10.1086/508496
  57. Freimanis, G., Hooley, P., Ejtehadi, H.D., Ali, H.A., Veitch, A., Rylance, P.B., Alawi, A., Axford, J., Nevill, A., Murray, P.G., et al. (2010). A role for human endogenous retrovirus-K (HML-2) in rheumatoid arthritis: investigating mechanisms of pathogenesis. Clin. Exp. Immunol. 160, 340-347. https://doi.org/10.1111/j.1365-2249.2010.04110.x
  58. Fries, G.R., Walss-Bass, C., Bauer, M.E., and Teixeira, A.L. (2019). Revisiting inflammation in bipolar disorder. Pharmacol. Biochem. Behav. 177, 12-19. https://doi.org/10.1016/j.pbb.2018.12.006
  59. Fuchs, N.V., Kraft, M., Tondera, C., Hanschmann, K.M., Lower, J., and Lower, R. (2011). Expression of the human endogenous retrovirus (HERV) group HML-2/HERV-K does not depend on canonical promoter elements but is regulated by transcription factors Sp1 and Sp3. J. Virol. 85, 3436-3448. https://doi.org/10.1128/JVI.02539-10
  60. Fuentes, D.R., Swigut, T., and Wysocka, J. (2018). Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. Elife 7, e35989. https://doi.org/10.7554/elife.35989
  61. Gabriel, U., Steidler, A., Trojan, L., Michel, M.S., Seifarth, W., and Fabarius, A. (2010). Smoking increases transcription of human endogenous retroviruses in a newly established in vitro cell model and in normal urothelium. AIDS Res. Hum. Retroviruses 26, 883-888. https://doi.org/10.1089/aid.2010.0014
  62. Galli, U.M., Sauter, M., Lecher, B., Maurer, S., Herbst, H., Roemer, K., and Mueller-Lantzsch, N. (2005). Human endogenous retrovirus rec interferes with germ cell development in mice and may cause carcinoma in situ, the predecessor lesion of germ cell tumors. Oncogene 24, 3223-3228. https://doi.org/10.1038/sj.onc.1208543
  63. Gao, Y., Yu, X.F., and Chen, T. (2021). Human endogenous retroviruses in cancer: expression, regulation and function. Oncol. Lett. 21, 121. https://doi.org/10.3892/ol.2020.12382
  64. Garcia-Montojo, M. and Nath, A. (2021). HERV-W envelope expression in blood leukocytes as a marker of disease severity of COVID-19. EBioMedicine 67, 103363. https://doi.org/10.1016/j.ebiom.2021.103363
  65. Garcia-Montojo, M., Doucet-O'Hare, T., Henderson, L., and Nath, A. (2018). Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit. Rev. Microbiol. 44, 715-738. https://doi.org/10.1080/1040841x.2018.1501345
  66. Garson, J.A., Tuke, P.W., Giraud, P., Paranhos-Baccala, G., and Perron, H. (1998). Detection of virion-associated MSRV-RNA in serum of patients with multiple sclerosis. Lancet 351, 33. https://doi.org/10.1016/S0140-6736(98)24001-3
  67. Gimenez-Orenga, K. and Oltra, E. (2021). Human endogenous retrovirus as therapeutic targets in neurologic disease. Pharmaceuticals (Basel) 14, 495. https://doi.org/10.3390/ph14060495
  68. Gutierrez-Lovera, C., Vazquez-Rios, A.J., Guerra-Varela, J., Sanchez, L., and de la Fuente, M. (2017). The potential of zebrafish as a model organism for improving the translation of genetic anticancer nanomedicines. Genes (Basel) 8, 349. https://doi.org/10.3390/genes8120349
  69. Goering, W., Ribarska, T., and Schulz, W.A. (2011). Selective changes of retroelement expression in human prostate cancer. Carcinogenesis 32, 1484-1492. https://doi.org/10.1093/carcin/bgr181
  70. Goldsmith, D.R., Rapaport, M.H., and Miller, B.J. (2016). A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry 21, 1696-1709. https://doi.org/10.1038/mp.2016.3
  71. Gorrini, C., Squatrito, M., Luise, C., Syed, N., Perna, D., Wark, L., Martinato, F., Sardella, D., Verrecchia, A., Bennett, S., et al. (2007). Tip60 is a haploinsufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448, 1063-1067. https://doi.org/10.1038/nature06055
  72. Griffiths, D.J. (2001). Endogenous retroviruses in the human genome sequence. Genome Biol. 2, REVIEWS1017. https://doi.org/10.1186/gb-2001-2-6-reviews1017
  73. Groger, V., Emmer, A., Staege, M.S., and Cynis, H. (2021). Endogenous retroviruses in nervous system disorders. Pharmaceuticals (Basel) 14, 70. https://doi.org/10.3390/ph14010070
  74. Gutierrez, K., Dicks, N., Glanzner, W., Agellon, L., and Bordignon, V. (2015). Efficacy of the porcine species in biomedical research. Front. Genet. 6, 293. https://doi.org/10.3389/fgene.2015.00293
  75. Hamilton, N., Clarke, A., Isles, H., Carson, E., Levraud, J.P., and Renshaw, S.A. (2021). A zebrafish reporter line reveals immune and neuronal expression of endogenous retrovirus. BioRxiv, https://doi.org/10.1101/2021.01.21.427598
  76. Hanke, K., Chudak, C., Kurth, R., and Bannert, N. (2013). The Rec protein of HERV-K(HML-2) upregulates androgen receptor activity by binding to the human small glutamine-rich tetratricopeptide repeat protein (hSGT). Int. J. Cancer 132, 556-567. https://doi.org/10.1002/ijc.27693
  77. Hayward, A., Cornwallis, C.K., and Jern, P. (2015). Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proc. Natl. Acad. Sci. U. S. A. 112, 464-469. https://doi.org/10.1073/pnas.1414980112
  78. Hayward, A., Grabherr, M., and Jern, P. (2013). Broad-scale phylogenomics provides insights into retrovirus-host evolution. Proc. Natl. Acad. Sci. U. S. A. 110, 20146-20151. https://doi.org/10.1073/pnas.1315419110
  79. Herbst, H., Sauter, M., and Mueller-Lantzsch, N. (1996). Expression of human endogenous retrovirus K elements in germ cell and trophoblastic tumors. Am. J. Pathol. 149, 1727-1735.
  80. Hohenadl, C., Germaier, H., Walchner, M., Hagenhofer, M., Herrmann, M., Sturzl, M., Kind, P., Hehlmann, R., Erfle, V., and Leib-Mosch, C. (1999). Transcriptional activation of endogenous retroviral sequences in human epidermal keratinocytes by UVB irradiation. J. Invest. Dermatol. 113, 587-594. https://doi.org/10.1046/j.1523-1747.1999.00728.x
  81. Hohn, O., Hanke, K., and Bannert, N. (2013). HERV-K(HML-2), the best preserved family of HERVs: endogenization, expression, and implications in health and disease. Front. Oncol. 3, 246.
  82. Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503. https://doi.org/10.1038/nature12111
  83. Huang, W., Li, S., Hu, Y., Yu, H., Luo, F., Zhang, Q., and Zhu, F. (2011). Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia. Schizophr. Bull. 37, 988-1000. https://doi.org/10.1093/schbul/sbp166
  84. Huang, Y., Kim, J.K., Do, D.V., Lee, C., Penfold, C.A., Zylicz, J.J., Marioni, J.C., Hackett, J.A., and Surani, M.A. (2017). Stella modulates transcriptional and endogenous retrovirus programs during maternal-to-zygotic transition. Elife 6, e22345. https://doi.org/10.7554/elife.22345
  85. Jennings, B.H. (2011). Drosophila - a versatile model in biology & medicine. Mater. Today (Kidlington) 14, 190-195. https://doi.org/10.1016/S1369-7021(11)70113-4
  86. Jo, J.O., Kang, Y.J., Ock, M.S., Song, K.S., Jeong, M.J., Jeong, S.J., Choi, Y.H., Ko, E.J., Leem, S.H., Kim, S., et al. (2016). Expression profiles of HERV-K Env protein in normal and cancerous tissues. Genes Genomics 38, 91-107. https://doi.org/10.1007/s13258-015-0343-9
  87. Jonsson, M.E., Garza, R., Sharma, Y., Petri, R., Sodersten, E., Johansson, J.G., Johansson, P.A., Atacho, D.A., Pircs, K., Madsen, S., et al. (2021). Activation of endogenous retroviruses during brain development causes an inflammatory response. EMBO J. 40, e106423.
  88. Jung, G.T., Kim, K.P., and Kim, K. (2020a). How to interpret and integrate multi-omics data at systems level. Anim. Cells Syst. (Seoul) 24, 1-7. https://doi.org/10.1080/19768354.2020.1721321
  89. Jung, J., Choi, I., Ro, H., Huh, T.L., Choe, J., and Rhee, M. (2020b). march5 governs the convergence and extension movement for organization of the telencephalon and diencephalon in zebrafish embryos. Mol. Cells 43, 76-85. https://doi.org/10.14348/molcells.2019.0210
  90. Jung, J., Udhaya Kumar, S., Choi, I., Huh, T.L., and Rhee, M. (2019). Znf76 is associated with development of the eyes, midbrain, MHB, and hindbrain in zebrafish embryos. Anim. Cells Syst. (Seoul) 23, 26-31. https://doi.org/10.1080/19768354.2018.1557744
  91. Kannan, P., Buettner, R., Pratt, D.R., and Tainsky, M.A. (1991). Identification of a retinoic acid-inducible endogenous retroviral transcript in the human teratocarcinoma-derived cell line PA-1. J. Virol. 65, 6343-6348. https://doi.org/10.1128/jvi.65.11.6343-6348.1991
  92. Karimi, A., Sheervalilou, R., and Kahroba, H. (2019). A new insight on activation of human endogenous retroviruses (HERVs) in malignant melanoma upon exposure to CuSO4. Biol. Trace Elem. Res. 191, 70-74. https://doi.org/10.1007/s12011-018-1605-6
  93. Karlsson, H., Schroder, J., Bachmann, S., Bottmer, C., and Yolken, R.H. (2004). HERV-W-related RNA detected in plasma from individuals with recent-onset schizophrenia or schizoaffective disorder. Mol. Psychiatry 9, 12-13. https://doi.org/10.1038/sj.mp.4001439
  94. Kassiotis, G. (2014). Endogenous retroviruses and the development of cancer. J. Immunol. 192, 1343-1349. https://doi.org/10.4049/jimmunol.1302972
  95. Katoh, I., Mirova, A., Kurata, S., Murakami, Y., Horikawa, K., Nakakuki, N., Sakai, T., Hashimoto, K., Maruyama, A., Yonaga, T., et al. (2011). Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M. Neoplasia 13, 1081-1092. https://doi.org/10.1593/neo.11794
  96. Katsumata, K., Ikeda, H., Sato, M., Ishizu, A., Kawarada, Y., Kato, H., Wakisaka, A., Koike, T., and Yoshiki, T. (1999). Cytokine regulation of env gene expression of human endogenous retrovirus-R in human vascular endothelial cells. Clin. Immunol. 93, 75-80. https://doi.org/10.1006/clim.1999.4762
  97. Kim, D.Y., Moon, S.H., Han, J.H., Kim, M.J., Oh, S.J., Bharti, D., Lee, S.H., Park, J.K., Rho, G.J., and Jeon, B.G. (2020). Terminal differentiation into adipocyte and growth inhibition by PPARγ activation in human A549 lung adenocarcinoma cells. Anim. Cells Syst. (Seoul) 24, 329-340. https://doi.org/10.1080/19768354.2020.1847731
  98. Kim, S.H., Jung, H., Ahnn, J., and Lee, S.K. (2019). Calcineurin tax-6 regulates male ray development and counteracts with kin-29 kinase in Caenorhabditis elegans. Anim. Cells Syst. (Seoul) 23, 399-406. https://doi.org/10.1080/19768354.2019.1687584
  99. Kim, Y.J., Kim, K., Seo, S.Y., Yu, J., Kim, I.H., Kim, H.J., Park, C.K., Lee, K.H., Choi, J., Song, M.S., et al. (2021). Time-sequential change in immune-related gene expression after irradiation in glioblastoma: next-generation sequencing analysis. Anim. Cells Syst. (Seoul) 25, 245-254. https://doi.org/10.1080/19768354.2021.1954550
  100. Knossl, M., Lower, R., and Lower, J. (1999). Expression of the human endogenous retrovirus HTDV/HERV-K is enhanced by cellular transcription factor YY1. J. Virol. 73, 1254-1261. https://doi.org/10.1128/jvi.73.2.1254-1261.1999
  101. Ko, E.J., Ock, M.S., Choi, Y.H., Iovanna, J.L., Mun, S., Han, K., Kim, H.S., and Cha, H.J. (2021a). Human endogenous retrovirus (HERV)-K env gene knockout affects tumorigenic characteristics of nupr1 gene in DLD-1 colorectal cancer cells. Int. J. Mol. Sci. 22, 3941. https://doi.org/10.3390/ijms22083941
  102. Ko, E.J., Song, K.S., Ock, M.S., Choi, Y.H., Kim, S., Kim, H.S., and Cha, H.J. (2021b). Expression profiles of human endogenous retrovirus (HERV)-K and HERV-R Env proteins in various cancers. BMB Rep. 54, 368-373. https://doi.org/10.5483/BMBRep.2021.54.7.246
  103. Komurian-Pradel, F., Paranhos-Baccala, G., Bedin, F., Ounanian-Paraz, A., Sodoyer, M., Ott, C., Rajoharison, A., Garcia, E., Mallet, F., Mandrand, B., et al. (1999). Molecular cloning and characterization of MSRV-related sequences associated with retrovirus-like particles. Virology 260, 1-9. https://doi.org/10.1006/viro.1999.9792
  104. Kristensen, M.K. and Christensen, T. (2021). Regulation of the expression of human endogenous retroviruses: elements in fetal development and a possible role in the development of cancer and neurological diseases. APMIS 129, 241-253. https://doi.org/10.1111/apm.13130
  105. Krug, L., Chatterjee, N., Borges-Monroy, R., Hearn, S., Liao, W.W., Morrill, K., Prazak, L., Rozhkov, N., Theodorou, D., Hammell, M., et al. (2017). Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS. PLoS Genet. 13, e1006635. https://doi.org/10.1371/journal.pgen.1006635
  106. Kuzmich, N.N., Sivak, K.V., Chubarev, V.N., Porozov, Y.B., Savateeva-Lyubimova, T.N., and Peri, F. (2017). TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel) 5, 34. https://doi.org/10.3390/vaccines5040034
  107. Lamprecht, B., Walter, K., Kreher, S., Kumar, R., Hummel, M., Lenze, D., Kochert, K., Bouhlel, M.A., Richter, J., Soler, E., et al. (2010). Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 16, 571-579, 1p following 579. https://doi.org/10.1038/nm.2129
  108. Lee, G.Y., Sohn, J., and Lee, S.J.V. (2021a). Combinatorial approach using Caenorhabditis elegans and mammalian systems for aging research. Mol. Cells 44, 425-432. https://doi.org/10.14348/molcells.2021.0080
  109. Lee, H., Yoon, D.E., and Kim, K. (2020b). Genome editing methods in animal models. Anim. Cells Syst. (Seoul) 24, 8-16. https://doi.org/10.1080/19768354.2020.1726462
  110. Lee, H.E., Park, S.J., Huh, J.W., Imai, H., and Kim, H.S. (2020a). Enhancer function of microRNA-3681 derived from long terminal repeats represses the activity of variable number tandem repeats in the 3' UTR of SHISA7. Mol. Cells 43, 607-618. https://doi.org/10.14348/molcells.2020.0058
  111. Lee, S.H. and Kim, E.Y. (2021). Short-term maintenance on a high-sucrose diet alleviates aging-induced sleep fragmentation in drosophila. Anim. Cells Syst. (Seoul) 2021 Nov 3 [Epub]. https://doi.org/10.1080/19768354.2021.1997801
  112. Lee, W., Mariappan, R., De, K., and Ohn, T. (2021b). Loss of MeCP2 causes subtle alteration in dendritic arborization of retinal ganglion cells. Anim. Cells Syst. (Seoul) 25, 102-109. https://doi.org/10.1080/19768354.2021.1920459
  113. Lee, W.C., Kim, D.Y., Kim, M.J., Lee, H.J., Bharti, D., Lee, S.H., Kang, Y.H., Rho, G.J., and Jeon, B.G. (2019a). Delay of cell growth and loss of stemness by inhibition of reverse transcription in human mesenchymal stem cells derived from dental tissue. Anim. Cells Syst. (Seoul) 23, 335-345. https://doi.org/10.1080/19768354.2019.1651767
  114. Lee, W.J., Kwun, H.J., Kim, H.S., and Jang, K.L. (2003). Activation of the human endogenous retrovirus W long terminal repeat by herpes simplex virus type 1 immediate early protein 1. Mol. Cells 15, 75-80.
  115. Lee, Y., Kang, H., Jin, C., Zhang, Y., Kim, Y., and Han, K. (2019b). Transcriptome analyses suggest minimal effects of Shank3 dosage on directional gene expression changes in the mouse striatum. Anim. Cells Syst. (Seoul) 23, 270-274. https://doi.org/10.1080/19768354.2019.1595142
  116. Lee, Y., Kim, D., and Lee, C.J. (2020c). Suppressive effects of valproic acid on caudal fin regeneration in adult zebrafish. Anim. Cells Syst. (Seoul) 24, 349-358. https://doi.org/10.1080/19768354.2020.1860126
  117. Lee, Y., Lee, M., Lee, S.W., Choi, N.Y., Ham, S., Lee, H.J., Ko, K., and Ko, K. (2019c). Reprogramming of spermatogonial stem cells into pluripotent stem cells in the spheroidal state. Anim. Cells Syst. (Seoul) 23, 392-398. https://doi.org/10.1080/19768354.2019.1672578
  118. Lemaitre, C., Tsang, J., Bireau, C., Heidmann, T., and Dewannieux, M. (2017). A human endogenous retrovirus-derived gene that can contribute to oncogenesis by activating the ERK pathway and inducing migration and invasion. PLoS Pathog. 13, e1006451. https://doi.org/10.1371/journal.ppat.1006451
  119. Levet, S., Medina, J., Joanou, J., Demolder, A., Queruel, N., Reant, K., Normand, M., Seffals, M., Dimier, J., Germi, R., et al. (2017). An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes. JCI Insight 2, e94387. https://doi.org/10.1172/jci.insight.94387
  120. Levine, E. and Lee, K.S. (2020). Microfluidic approaches for Caenorhabditis elegans research. Anim. Cells Syst. (Seoul) 24, 311-320. https://doi.org/10.1080/19768354.2020.1837951
  121. Li, M., Radvanyi, L., Yin, B., Rycaj, K., Li, J., Chivukula, R., Lin, K., Lu, Y., Shen, J., Chang, D.Z., et al. (2017). Downregulation of human endogenous retrovirus type K (HERV-K) viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth. Clin. Cancer Res. 23, 5892-5911. https://doi.org/10.1158/1078-0432.CCR-17-0001
  122. Li, S., Liu, Z.C., Yin, S.J., Chen, Y.T., Yu, H.L., Zeng, J., Zhang, Q., and Zhu, F. (2013). Human endogenous retrovirus W family envelope gene activates the small conductance Ca2+-activated K+ channel in human neuroblastoma cells through CREB. Neuroscience 247, 164-174. https://doi.org/10.1016/j.neuroscience.2013.05.033
  123. Li, W., Lee, M.H., Henderson, L., Tyagi, R., Bachani, M., Steiner, J., Campanac, E., Hoffman, D.A., von Geldern, G., Johnson, K., et al. (2015). Human endogenous retrovirus-K contributes to motor neuron disease. Sci. Transl. Med. 7, 307ra153. https://doi.org/10.1126/scitranslmed.aac8201
  124. Li, Z., Sheng, T., Wan, X., Liu, T., Wu, H., and Dong, J. (2010). Expression of HERV-K correlates with status of MEK-ERK and p16INK4A-CDK4 pathways in melanoma cells. Cancer Invest. 28, 1031-1037. https://doi.org/10.3109/07357907.2010.512604
  125. Madeira, A., Burgelin, I., Perron, H., Curtin, F., Lang, A.B., and Faucard, R. (2016). MSRV envelope protein is a potent, endogenous and pathogenic agonist of human toll-like receptor 4: relevance of GNbAC1 in multiple sclerosis treatment. J. Neuroimmunol. 291, 29-38. https://doi.org/10.1016/j.jneuroim.2015.12.006
  126. Mager, D.L. and Medstrand, P. (2005). Retroviral repeat sequences. eLS 2005 Sep 23. https://doi.org/10.1038/npg.els.0005062
  127. Mameli, G., Erre, G.L., Caggiu, E., Mura, S., Cossu, D., Bo, M., Cadoni, M.L., Piras, A., Mundula, N., Colombo, E., et al. (2017). Identification of a HERV-K env surface peptide highly recognized in Rheumatoid Arthritis (RA) patients: a cross-sectional case-control study. Clin. Exp. Immunol. 189, 127-131. https://doi.org/10.1111/cei.12964
  128. Manghera, M., Ferguson-Parry, J., Lin, R., and Douville, R.N. (2016). NF-κB and IRF1 induce endogenous retrovirus K expression via interferon-stimulated response elements in its 5' long terminal repeat. J. Virol. 90, 9338-9349. https://doi.org/10.1128/JVI.01503-16
  129. Martin, M.A., Bryan, T., Rasheed, S., and Khan, A.S. (1981). Identification and cloning of endogenous retroviral sequences present in human DNA. Proc. Natl. Acad. Sci. U. S. A. 78, 4892-4896. https://doi.org/10.1073/pnas.78.8.4892
  130. Mattera, L., Escaffit, F., Pillaire, M.J., Selves, J., Tyteca, S., Hoffmann, J.S., Gourraud, P.A., Chevillard-Briet, M., Cazaux, C., and Trouche, D. (2009). The p400/Tip60 ratio is critical for colorectal cancer cell proliferation through DNA damage response pathways. Oncogene 28, 1506-1517. https://doi.org/10.1038/onc.2008.499
  131. Mayer, J., Harz, C., Sanchez, L., Pereira, G.C., Maldener, E., Heras, S.R., Ostrow, L.W., Ravits, J., Batra, R., Meese, E., et al. (2018). Transcriptional profiling of HERV-K(HML-2) in amyotrophic lateral sclerosis and potential implications for expression of HML-2 proteins. Mol. Neurodegener. 13, 39. https://doi.org/10.1186/s13024-018-0275-3
  132. Meneely, P.M., Dahlberg, C.L., and Rose, J.K. (2019). Working with worms: Caenorhabditis elegans as a model organism. Curr. Protoc. Essent. Lab. Tech. 19, e35.
  133. Menendez, L., Benigno, B.B., and McDonald, J.F. (2004). L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas. Mol. Cancer 3, 12. https://doi.org/10.1186/1476-4598-3-12
  134. Misiak, B., Stanczykiewicz, B., Kotowicz, K., Rybakowski, J.K., Samochowiec, J., and Frydecka, D. (2018). Cytokines and C-reactive protein alterations with respect to cognitive impairment in schizophrenia and bipolar disorder: a systematic review. Schizophr. Res. 192, 16-29. https://doi.org/10.1016/j.schres.2017.04.015
  135. Mitsuhashi, S., Nakagawa, S., Sasaki-Honda, M., Sakurai, H., Frith, M.C., and Mitsuhashi, H. (2021). Nanopore direct RNA sequencing detects DUX4-activated repeats and isoforms in human muscle cells. Hum. Mol. Genet. 30, 552-563. https://doi.org/10.1093/hmg/ddab063
  136. Montesion, M., Williams, Z.H., Subramanian, R.P., Kuperwasser, C., and Coffin, J.M. (2018). Promoter expression of HERV-K (HML-2) provirus-derived sequences is related to LTR sequence variation and polymorphic transcription factor binding sites. Retrovirology 15, 57. https://doi.org/10.1186/s12977-018-0441-2
  137. Moon, Y., Moon, R., Roh, H., Chang, S., Lee, S., and Park, H. (2020). HIF-1α-dependent induction of carboxypeptidase A4 and carboxypeptidase E in hypoxic human adipose-derived stem cells. Mol. Cells 43, 945-952. https://doi.org/10.14348/molcells.2020.0100
  138. Moses, K., Ellis, M.C., and Rubin, G.M. (1989). The glass gene encodes a zinc-finger protein required by Drosophila photoreceptor cells. Nature 340, 531-536. https://doi.org/10.1038/340531a0
  139. Mullins, C.S. and Linnebacher, M. (2012). Human endogenous retroviruses and cancer: causality and therapeutic possibilities. World J. Gastroenterol. 18, 6027-6035. https://doi.org/10.3748/wjg.v18.i42.6027
  140. Nakagawa, K., Brusic, V., McColl, G., and Harrison, L.C. (1997). Direct evidence for the expression of multiple endogenous retroviruses in the synovial compartment in rheumatoid arthritis. Arthritis Rheum. 40, 627-638. https://doi.org/10.1002/1529-0131(199704)40:4<627::AID-ART6>3.0.CO;2-7
  141. Nakkuntod, J., Sukkapan, P., Avihingsanon, Y., Mutirangura, A., and Hirankarn, N. (2013). DNA methylation of human endogenous retrovirus in systemic lupus erythematosus. J. Hum. Genet. 58, 241-249. https://doi.org/10.1038/jhg.2013.6
  142. Nellaker, C., Yao, Y., Jones-Brando, L., Mallet, F., Yolken, R.H., and Karlsson, H. (2006). Transactivation of elements in the human endogenous retrovirus W family by viral infection. Retrovirology 3, 44. https://doi.org/10.1186/1742-4690-3-44
  143. Nelson, P.N. (1995). Retroviruses in rheumatic diseases. Ann. Rheum. Dis. 54, 441-442. https://doi.org/10.1136/ard.54.6.441
  144. Nemes, K. and Fruhwald, M.C. (2018). Emerging therapeutic targets for the treatment of malignant rhabdoid tumors. Expert Opin. Ther. Targets 22, 365-379. https://doi.org/10.1080/14728222.2018.1451839
  145. Nguyen, T.D., Davis, J., Eugenio, R.A., and Liu, Y. (2019). Female sex hormones activate human endogenous retrovirus type K through the OCT4 transcription factor in T47D breast cancer cells. AIDS Res. Hum. Retroviruses 35, 348-356. https://doi.org/10.1089/aid.2018.0173
  146. Oh, S. and Park, J.T. (2019). Zebrafish model of KRAS-initiated pancreatic endocrine tumor. Anim. Cells Syst. (Seoul) 23, 209-218. https://doi.org/10.1080/19768354.2019.1610058
  147. Ohgaki, H. and Kleihues, P. (2005). Epidemiology and etiology of gliomas. Acta Neuropathol. 109, 93-108. https://doi.org/10.1007/s00401-005-0991-y
  148. Okada, M., Ogasawara, H., Kaneko, H., Hishikawa, T., Sekigawa, I., Hashimoto, H., Maruyama, N., Kaneko, Y., and Yamamoto, N. (2002). Role of DNA methylation in transcription of human endogenous retrovirus in the pathogenesis of systemic lupus erythematosus. J. Rheumatol. 29, 1678-1682.
  149. Ono, M., Kawakami, M., and Ushikubo, H. (1987). Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J. Virol. 61, 2059-2062. https://doi.org/10.1128/jvi.61.6.2059-2062.1987
  150. Ostrom, Q.T., Gittleman, H., Fulop, J., Liu, M., Blanda, R., Kromer, C., Wolinsky, Y., Kruchko, C., and Barnholtz-Sloan, J.S. (2015). CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol. 17 Suppl 4, iv1-iv62. https://doi.org/10.1093/neuonc/nov189
  151. Ovejero, T., Sadones, O., Sanchez-Fito, T., Almenar-Perez, E., Espejo, J.A., Martin-Martinez, E., Nathanson, L., and Oltra, E. (2020). Activation of transposable elements in immune cells of fibromyalgia patients. Int. J. Mol. Sci. 21, 1366. https://doi.org/10.3390/ijms21041366
  152. Padmanabhan Nair, V., Liu, H., Ciceri, G., Jungverdorben, J., Frishman, G., Tchieu, J., Cederquist, G.Y., Rothenaigner, I., Schorpp, K., Klepper, L., et al. (2021). Activation of HERV-K(HML-2) disrupts cortical patterning and neuronal differentiation by increasing NTRK3. Cell Stem Cell 28, 1566-1581.e8. https://doi.org/10.1016/j.stem.2021.04.009
  153. Payer, B., Saitou, M., Barton, S.C., Thresher, R., Dixon, J.P., Zahn, D., Colledge, W.H., Carlton, M.B., Nakano, T., and Surani, M.A. (2003). Stella is a maternal effect gene required for normal early development in mice. Curr. Biol. 13, 2110-2117. https://doi.org/10.1016/j.cub.2003.11.026
  154. Perron, H., Dougier-Reynaud, H.L., Lomparski, C., Popa, I., Firouzi, R., Bertrand, J.B., Marusic, S., Portoukalian, J., Jouvin-Marche, E., Villiers, C.L., et al. (2013). Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. Plos One 8, e80128. https://doi.org/10.1371/journal.pone.0080128
  155. Perron, H., Hamdani, N., Faucard, R., Lajnef, M., Jamain, S., DabanHuard, C., Sarrazin, S., LeGuen, E., Houenou, J., Delavest, M., et al. (2012). Molecular characteristics of Human Endogenous Retrovirus type-W in schizophrenia and bipolar disorder. Transl. Psychiatry 2, e201. https://doi.org/10.1038/tp.2012.125
  156. Perron, H., Mekaoui, L., Bernard, C., Veas, F., Stefas, I., and Leboyer, M. (2008). Endogenous retrovirus type W GAG and envelope protein antigenemia in serum of schizophrenic patients. Biol. Psychiatry 64, 1019-1023. https://doi.org/10.1016/j.biopsych.2008.06.028
  157. Pi, W., Yang, Z., Wang, J., Ruan, L., Yu, X., Ling, J., Krantz, S., Isales, C., Conway, S.J., Lin, S., et al. (2004). The LTR enhancer of ERV-9 human endogenous retrovirus is active in oocytes and progenitor cells in transgenic zebrafish and humans. Proc. Natl. Acad. Sci. U. S. A. 101, 805-810. https://doi.org/10.1073/pnas.0307698100
  158. Quelle, D.E., Zindy, F., Ashmun, R.A., and Sherr, C.J. (1995). Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993-1000. https://doi.org/10.1016/0092-8674(95)90214-7
  159. Rajagopalan, D., Tirado-Magallanes, R., Bhatia, S.S., Teo, W.S., Sian, S., Hora, S., Lee, K.K., Zhang, Y., Jadhav, S.P., Wu, Y., et al. (2018). TIP60 represses activation of endogenous retroviral elements. Nucleic Acids Res. 46, 9456-9470. https://doi.org/10.1093/nar/gky659
  160. Ramsoondar, J., Vaught, T., Ball, S., Mendicino, M., Monahan, J., Jobst, P., Vance, A., Duncan, J., Wells, K., and Ayares, D. (2009). Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 16, 164-180. https://doi.org/10.1111/j.1399-3089.2009.00525.x
  161. Rasmussen, H.B., Geny, C., Deforges, L., Perron, H., Tourtelotte, W., Heltberg, A., and Clausen, J. (1995). Expression of endogenous retroviruses in blood mononuclear cells and brain tissue from multiple sclerosis patients. Mult. Scler. 1, 82-87. https://doi.org/10.1177/135245859500100205
  162. Reiche, J., Pauli, G., and Ellerbrok, H. (2010). Differential expression of human endogenous retrovirus K transcripts in primary human melanocytes and melanoma cell lines after UV irradiation. Melanoma Res. 20, 435-440. https://doi.org/10.1097/cmr.0b013e32833c1b5d
  163. Rimal, S., Sang, J., Dhakal, S., and Lee, Y. (2020). Cucurbitacin B activates bitter-sensing gustatory receptor neurons via gustatory receptor 33a in Drosophila melanogaster. Mol. Cells 43, 530-538. https://doi.org/10.14348/molcells.2020.0019
  164. Rodriguez-Pinto, I., Agmon-Levin, N., Howard, A., and Shoenfeld, Y. (2014). Fibromyalgia and cytokines. Immunol. Lett. 161, 200-203. https://doi.org/10.1016/j.imlet.2014.01.009
  165. Rolland, A., Jouvin-Marche, E., Viret, C., Faure, M., Perron, H., and Marche, P.N. (2006). The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J. Immunol. 176, 7636-7644. https://doi.org/10.4049/jimmunol.176.12.7636
  166. Romao, M., Peracoli, J.C., Bannwart-Castro, C.F., Medeiros, L.T., Weel, I.C., Borges, V.T., Golim, M.A., and Peracoli, M.T. (2012). PP063. TLR4 expression and pro-inflammatory cytokine production by peripheral blood monocytes from preeclamptic women. Pregnancy Hypertens. 2, 276.
  167. Saito, T., Mihira, N., Matsuba, Y., Sasaguri, H., Hashimoto, S., Narasimhan, S., Zhang, B., Murayama, S., Higuchi, M., Lee, V.M.Y., et al. (2019). Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation. J. Biol. Chem. 294, 12754-12765. https://doi.org/10.1074/jbc.ra119.009487
  168. Santoni, F.A., Guerra, J., and Luban, J. (2012). HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology 9, 111. https://doi.org/10.1186/1742-4690-9-111
  169. Schanab, O., Humer, J., Gleiss, A., Mikula, M., Sturlan, S., Grunt, S., Okamoto, I., Muster, T., Pehamberger, H., and Waltenberger, A. (2011). Expression of human endogenous retrovirus K is stimulated by ultraviolet radiation in melanoma. Pigment Cell Melanoma Res. 24, 656-665. https://doi.org/10.1111/j.1755-148X.2011.00860.x
  170. Serafino, A., Balestrieri, E., Pierimarchi, P., Matteucci, C., Moroni, G., Oricchio, E., Rasi, G., Mastino, A., Spadafora, C., Garaci, E., et al. (2009). The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation. Exp. Cell Res. 315, 849-862. https://doi.org/10.1016/j.yexcr.2008.12.023
  171. Shah, M. and Woo, H.G. (2021). Molecular perspectives of SARS-CoV-2: pathology, immune evasion, and therapeutic interventions. Mol. Cells 44, 408-421. https://doi.org/10.14348/molcells.2021.0026
  172. Siebenthall, K.T., Miller, C.P., Vierstra, J.D., Mathieu, J., Tretiakova, M., Reynolds, A., Sandstrom, R., Rynes, E., Haugen, E., Johnson, A., et al. (2019). Integrated epigenomic profiling reveals endogenous retrovirus reactivation in renal cell carcinoma. EBioMedicine 41, 427-442. https://doi.org/10.1016/j.ebiom.2019.01.063
  173. Stengel, S., Fiebig, U., Kurth, R., and Denner, J. (2010). Regulation of human endogenous retrovirus-K expression in melanomas by CpG methylation. Genes Chromosomes Cancer 49, 401-411. https://doi.org/10.1002/gcc.20751
  174. Strick, R., Ackermann, S., Langbein, M., Swiatek, J., Schubert, S.W., Hashemolhosseini, S., Koscheck, T., Fasching, P.A., Schild, R.L., Beckmann, M.W., et al. (2007). Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J. Mol. Med. (Berl.) 85, 23-38. https://doi.org/10.1007/s00109-006-0104-y
  175. Sutkowski, N., Chen, G., Calderon, G., and Huber, B.T. (2004). Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J. Virol. 78, 7852-7860. https://doi.org/10.1128/JVI.78.14.7852-7860.2004
  176. Tanaka, S. (2000). [Molecular and pathological analyses of newly established transgenic rats carrying human endogenous retrovirus gene, ERV3]. Hokkaido Igaku Zasshi 75, 105-116. Japanese.
  177. Tanaka, S., Ikeda, H., Otsuka, N., Yamamoto, Y., Sugaya, T., and Yoshiki, T. (2003). Tissue specific high level expression of a full length human endogenous retrovirus genome transgene, HERV-R, under control of its own promoter in rats. Transgenic Res. 12, 319-328. https://doi.org/10.1023/A:1023381819572
  178. Tie, C.H., Fernandes, L., Conde, L., Robbez-Masson, L., Sumner, R.P., Peacock, T., Rodriguez-Plata, M.T., Mickute, G., Gifford, R., Towers, G.J., et al. (2018). KAP1 regulates endogenous retroviruses in adult human cells and contributes to innate immune control. EMBO Rep. 19, e45000. https://doi.org/10.15252/embr.201745000
  179. Tovo, P.A., Garazzino, S., Dapra, V., Pruccoli, G., Calvi, C., Mignone, F., Alliaudi, C., Denina, M., Scolfaro, C., Zoppo, M., et al. (2021). COVID-19 in children: expressions of type I/II/III interferons, TRIM28, SETDB1, and endogenous retroviruses in mild and severe cases. Int. J. Mol. Sci. 22, 7481. https://doi.org/10.3390/ijms22147481
  180. Tugnet, N., Rylance, P., Roden, D., Trela, M., and Nelson, P. (2013). Human endogenous retroviruses (HERVs) and autoimmune rheumatic disease: is there a link? Open Rheumatol. J. 7, 13-21. https://doi.org/10.2174/1874312901307010013
  181. Turcanova, V.L., Bundgaard, B., and Hollsberg, P. (2009). Human herpesvirus-6B induces expression of the human endogenous retrovirus K18-encoded superantigen. J. Clin. Virol. 46, 15-19. https://doi.org/10.1016/j.jcv.2009.05.015
  182. Uchida, O., Nakano, H., Koga, M., and Ohshima, Y. (2003). The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons. Development 130, 1215-1224. https://doi.org/10.1242/dev.00341
  183. Vlisidou, I. and Wood, W. (2015). Drosophila blood cells and their role in immune responses. FEBS J. 282, 1368-1382. https://doi.org/10.1111/febs.13235
  184. Wallace, T.A., Downey, R.F., Seufert, C.J., Schetter, A., Dorsey, T.H., Johnson, C.A., Goldman, R., Loffredo, C.A., Yan, P., Sullivan, F.J., et al. (2014). Elevated HERV-K mRNA expression in PBMC is associated with a prostate cancer diagnosis particularly in older men and smokers. Carcinogenesis 35, 2074-2083. https://doi.org/10.1093/carcin/bgu114
  185. Walsh, N.C., Kenney, L.L., Jangalwe, S., Aryee, K.E., Greiner, D.L., Brehm, M.A., and Shultz, L.D. (2017). Humanized mouse models of clinical disease. Annu. Rev. Pathol. 12, 187-215. https://doi.org/10.1146/annurev-pathol-052016-100332
  186. Wang-Johanning, F., Liu, J., Rycaj, K., Huang, M., Tsai, K., Rosen, D.G., Chen, D.T., Lu, D.W., Barnhart, K.F., and Johanning, G.L. (2007). Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int. J. Cancer 120, 81-90. https://doi.org/10.1002/ijc.22256
  187. Wang, J., Xie, G., Singh, M., Ghanbarian, A.T., Rasko, T., Szvetnik, A., Cai, H., Besser, D., Prigione, A., Fuchs, N.V., et al. (2014). Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405-409. https://doi.org/10.1038/nature13804
  188. Wang, M., Qiu, Y., Liu, H., Liang, B., Fan, B., Zhou, X., and Liu, D. (2020a). Transcription profile of human endogenous retroviruses in response to dengue virus serotype 2 infection. Virology 544, 21-30. https://doi.org/10.1016/j.virol.2020.01.014
  189. Wang, T., Medynets, M., Johnson, K.R., Doucet-O'Hare, T.T., DiSanza, B., Li, W., Xu, Y., Bagnell, A., Tyagi, R., Sampson, K., et al. (2020b). Regulation of stem cell function and neuronal differentiation by HERV-K via mTOR pathway. Proc. Natl. Acad. Sci. U. S. A. 117, 17842-17853. https://doi.org/10.1073/pnas.2002427117
  190. Wang, X., Liu, Z., Wang, P., Li, S., Zeng, J., Tu, X., Yan, Q., Xiao, Z., Pan, M., and Zhu, F. (2018). Syncytin-1, an endogenous retroviral protein, triggers the activation of CRP via TLR3 signal cascade in glial cells. Brain Behav. Immun. 67, 324-334. https://doi.org/10.1016/j.bbi.2017.09.009
  191. Wang, X., Wu, X., Huang, J., Li, H., Yan, Q., and Zhu, F. (2021). Human endogenous retrovirus W family envelope protein (HERV-W env) facilitates the production of TNF-α and IL-10 by inhibiting MyD88s in glial cells. Arch. Virol. 166, 1035-1045. https://doi.org/10.1007/s00705-020-04933-8
  192. Wang, X., Zhao, C., Zhang, C., Mei, X., Song, J., Sun, Y., Wu, Z., and Shi, W. (2019). Increased HERV-E clone 4-1 expression contributes to DNA hypomethylation and IL-17 release from CD4(+) T cells via miR-302d/MBD2 in systemic lupus erythematosus. Cell Commun. Signal. 17, 94. https://doi.org/10.1186/s12964-019-0416-5
  193. Wang, Z., Wang, Y., He, Y., Zhang, N., Chang, W., and Niu, Y. (2020c). Aquaporin-1 facilitates proliferation and invasion of gastric cancer cells via GRB7-mediated ERK and Ras activation. Anim. Cells Syst. (Seoul) 24, 253-259. https://doi.org/10.1080/19768354.2020.1833985
  194. Yang, Z., Chen, S., Xue, S., Li, X., Sun, Z., Yang, Y., Hu, X., Geng, T., and Cui, H. (2018). Generation of Cas9 transgenic zebrafish and their application in establishing an ERV-deficient animal model. Biotechnol. Lett. 40, 1507-1518. https://doi.org/10.1007/s10529-018-2605-5
  195. Young, J.M., Whiddon, J.L., Yao, Z., Kasinathan, B., Snider, L., Geng, L.N., Balog, J., Tawil, R., van der Maarel, S.M., and Tapscott, S.J. (2013). DUX4 binding to retroelements creates promoters that are active in FSHD muscle and testis. PLoS Genet. 9, e1003947. https://doi.org/10.1371/journal.pgen.1003947
  196. Yu, H.L., Zhao, Z.K., and Zhu, F. (2013). The role of human endogenous retroviral long terminal repeat sequences in human cancer (Review). Int. J. Mol. Med. 32, 755-762. https://doi.org/10.3892/ijmm.2013.1460
  197. Yu, X., Zhu, X., Pi, W., Ling, J., Ko, L., Takeda, Y., and Tuan, D. (2005). The long terminal repeat (LTR) of ERV-9 human endogenous retrovirus binds to NF-Y in the assembly of an active LTR enhancer complex NF-Y/MZF1/GATA-2. J. Biol. Chem. 280, 35184-35194. https://doi.org/10.1074/jbc.M508138200
  198. Yuan, Z., Yang, Y., Zhang, N., Soto, C., Jiang, X., An, Z., and Zheng, W.J. (2021). Human endogenous retroviruses in glioblastoma multiforme. Microorganisms 9, 764. https://doi.org/10.3390/microorganisms9040764
  199. Zhang, Y., Kang, H.R., and Han, K. (2019a). Differential cell-type-expression of CYFIP1 and CYFIP2 in the adult mouse hippocampus. Anim. Cells Syst. (Seoul) 23, 380-383. https://doi.org/10.1080/19768354.2019.1696406
  200. Zhang, Y., Li, T., Preissl, S., Amaral, M.L., Grinstein, J.D., Farah, E.N., Destici, E., Qiu, Y., Hu, R., Lee, A.Y., et al. (2019b). Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380-1388. https://doi.org/10.1038/s41588-019-0479-7
  201. Zhou, F., Krishnamurthy, J., Wei, Y., Li, M., Hunt, K., Johanning, G.L., Cooper, L.J., and Wang-Johanning, F. (2015). Chimeric antigen receptor T cells targeting HERV-K inhibit breast cancer and its metastasis through downregulation of Ras. Oncoimmunology 4, e1047582. https://doi.org/10.1080/2162402X.2015.1047582
  202. Zhou, F., Li, M., Wei, Y., Lin, K., Lu, Y., Shen, J., Johanning, G.L., and Wang-Johanning, F. (2016). Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells. Oncotarget 7, 84093-84117. https://doi.org/10.18632/oncotarget.11455
  203. Zhou, Y., Liu, L., Liu, Y., Zhou, P., Yan, Q., Yu, H., Chen, X., and Zhu, F. (2021). Implication of human endogenous retrovirus W family envelope in hepatocellular carcinoma promotes MEK/ERK-mediated metastatic invasiveness and doxorubicin resistance. Cell Death Discov. 7, 177. https://doi.org/10.1038/s41420-021-00562-5
  204. Zhou, Z., Li, X., Liu, Z., Huang, L., Yao, Y., Li, L., Chen, J., Zhang, R., Zhou, J., Wang, L., et al. (2020). A bromodomain-containing protein 4 (BRD4) inhibitor suppresses angiogenesis by regulating AP-1 expression. Front. Pharmacol. 11, 1043. https://doi.org/10.3389/fphar.2020.01043