DOI QR코드

DOI QR Code

Control Effect of Staphylococcus aureus by Co-Treatment of Nisin and a Bacteriophage

나이신과 박테리오파지의 병용처리에 의한 Staphylococcus aureus의 제어 효과

  • Kim, Seon-Gyu (Major of Biotechnology, Korea National University of Transportation) ;
  • Moon, Gi-Seong (Major of Biotechnology, Korea National University of Transportation)
  • 김선규 (한국교통대학교 생명공학전공) ;
  • 문기성 (한국교통대학교 생명공학전공)
  • Received : 2021.10.07
  • Accepted : 2021.12.06
  • Published : 2021.12.30

Abstract

One of the well characterized bacteriocins, nisin, shows strong antimicrobial activity against pathogenic bacteria such as Listeria monocytogenes and Staphylococcus aureus. This study evaluated the synergistic effect of commercial nisin and SAP84 bacteriophage on S. aureus. Nisin showed antimicrobial activity against S. aureus KCTC 3881 in a dose-dependent manner. Eighteen IU/mL of the nisin decreased 4.03 Log CFU/mL of the strain in MRS broth after six hours compared with the controlled subject. On the other hand, the same dose of the nisin decreased 5.54 Log CFU/mL when co-treated with 0.1 MOI of the bacteriophage SAP84. Furthermore, the combination of nisin and SAP84 was successfully applied for controlling the S. aureus strain in lettuce.

대표적인 상업화된 박테리오신인 나이신은 Listeria monocytogenes 및 Staphylococcus aureus와 같은 병원성 세균에 대해 강력한 항균 활성을 보인다. 본 연구에서는 시판되는 나이신 제품을 박테리오파지 SAP84와 함께 병용처리했을 때 S. aureus 억제에 대한 상승효과에 대하여 평가했다. S. aureus KCTC 3881 균주에 대해 나이신은 농도의존적으로 생균수를 감소시켰으며 18 IU/mL의 나이신은 대조구와 비교하여 6시간째에 4.03 Log CFU/mL의 균수가 감소된 반면, 동일 용량의 나이신이 박테리오파지 SAP84 (0.1 MOI)와 병용처리 되었을 때 5.54 Log CFU/mL의 생균수 감소가 관찰되었다. 또한 나이신과 SAP84의 조합은 양상추에서 S. aureus 균주를 효과적으로 제어하는데 성공적으로 적용되었다.

Keywords

Acknowledgement

본 연구는 농림축산식품부의 재원으로 농림수산식품기술기획평가원의 고부가가치식품기술개발사업(과제번호 117060033HD040)의 지원을 받아 수행되었습니다. 또한 부분적으로 2021년도 교육부의 재원으로 한국연구재단의 기초연구사업(No. 2021R1A6A1A03046418)의 지원을 받아 수행되었습니다. S. aureus 박테리오파지 SAP84는 가천대학교 식품생물공학과 박종현 교수님으로부터 분양 받았으며 이에 감사드립니다.

References

  1. Singh, V.P., Recent approaches in food bio-preservation - a review. Open Vet. J., 8, 104-111 (2018). https://doi.org/10.4314/ovj.v8i1.16
  2. Field, D., Quigley, L., O'Connor, P.M., Rea, M.C., Daly, K., Cotter, P.D., Hill, C., Ross R.P., Studies with bioengineered Nisin peptides highlight the broad-spectrum potency of Nisin V. Microb. Biotechnol., 3, 473-486 (2010). https://doi.org/10.1111/j.1751-7915.2010.00184.x
  3. Harada, L.K., Silva, E.C., Campos, W.F., Del Fiol, F.S., Vila, M., Dabrowska, K., Krylov, V.N., Balcao, V.M., Biotechnological applications of bacteriophages: State of the art. Microbiol. Res., 212-213, 38-58 (2018). https://doi.org/10.1016/j.micres.2018.04.007
  4. Sarhan, W.A., Azzazy, H.M., Phage approved in food, why not as a therapeutic? Expert Rev. Anti. Infect. Ther., 13, 91-101 (2015). https://doi.org/10.1586/14787210.2015.990383
  5. Ferguson, S., Roberts, C., Handy, E., Sharma, M., Lytic bacteriophages reduce Escherichia coli O157: H7 on fresh cut lettuce introduced through cross-contamination. Bacteriophage, 3, e24323 (2013) https://doi.org/10.4161/bact.24323
  6. Soffer, N., Abuladze, T., Woolston, J., Li, M., Hanna, L.F., Heyse, S., Charbonneau, D., Sulakvelidze, A., Bacteriophages safely reduce Salmonella contamination in pet food and raw pet food ingredients. Bacteriophage, 6, e1220347 (2016). https://doi.org/10.1080/21597081.2016.1220347
  7. Kim, S.G., Moon, G.S., Synergistic inhibition of Escherichia coli by a combination of bacteriophage and organic acid. J. Food Hyg. Saf., 34, 591-594 (2019). https://doi.org/10.13103/JFHS.2019.34.6.591
  8. Kim, S.G., Lee, Y.D., Park, J.H., Moon, G.S., Synergistic inhibition by bacteriocin and bacteriophage against Staphylococcus aureus. Food Sci. Anim. Resour., 39, 1015-1020 (2019). https://doi.org/10.5851/kosfa.2019.e95
  9. Duc, H.M., Son, H.M., Ngan, P.H., Sato, J., Masuda, Y., Honjoh, K.I., Miyamoto, T., Isolation and application of bacteriophages alone or in combination with nisin against planktonic and biofilm cells of Staphylococcus aureus. Appl. Microbiol. Biotechnol., 104, 5145-5158 (2020). https://doi.org/10.1007/s00253-020-10581-4
  10. Angelopoulou, A., Field, D., Perez-Ibarreche, M., Warda, A.K., Hill, C., Ross, R.P., Vancomycin and nisin A are effective against biofilms of multi-drug resistant Staphylococcus aureus isolates from human milk. PLoS One, 15, e0233284 (2020). https://doi.org/10.1371/journal.pone.0233284
  11. Jensen, C., Li, H., Vestergaard, M., Dalsgaard, A., Frees, D., Leisner, J.J., Nisin damages the septal membrane and triggers DNA condensation in methicillin-resistant Staphylococcus aureus. Front. Microbiol., 11, 1007 (2020). https://doi.org/10.3389/fmicb.2020.01007
  12. Yun, B., Lee, H.S., An, H.M., Kim, W.I., Kim, H.Y., Han, S., Kim, H.J., Ryu, J.G., Kim, S.R., Effect of chlorine dioxide and sodium hypochlorite treatment on the reduction of foodborne pathogen in Korean chive. J. Food Hyg. Saf., 32, 154-162 (2017). https://doi.org/10.13103/JFHS.2017.32.2.154
  13. Ibarra-Sanchez, L.A., El-Haddad, N., Mahmoud, D., Miller, M.J., Karam, L., Invited review: Advances in nisin use for preservation of dairy products. J. Dairy Sci., 103, 2041-2052 (2020). https://doi.org/10.3168/jds.2019-17498
  14. Narimisa, N., Sadeghi Kalani, B., Mohammadzadeh, R., Masjedian Jazi, F., Combination of antibiotics-nisin reduces the formation of persister cell in Listeria monocytogenes. Microb. Drug Resist., 27, 137-144 (2021). https://doi.org/10.1089/mdr.2020.0019
  15. Saad, M.A., Ombarak, R.A., Abd Rabou, H.S., Effect of nisin and lysozyme on bacteriological and sensorial quality of pasteurized milk. J. Adv. Vet. Anim. Res., 6, 403-408 (2019). https://doi.org/10.5455/javar.2019.f360
  16. Lewis, R., Bolocan, A.S., Draper, L.A., Ross, R.P., Hill, C., The effect of a commercially available bacteriophage and bacteriocin on Listeria monocytogenes in coleslaw. Viruses, 11, 977 (2019). https://doi.org/10.3390/v11110977