DOI QR코드

DOI QR Code

Evaluation of Nonlinear Seismic Response of RC Shear Wall in Nuclear Reactor Containment Building

원자로건물의 철근콘크리트 전단벽 비선형 지진응답 평가

  • Kim, Dae Hee (Architectural Engineering, Dankook University) ;
  • Lee, Kyung Koo (Architectural Engineering, Dankook University) ;
  • Koo, Ji Mo (Architectural Engineering, Dankook University)
  • 김대희 (단국대학교 건축공학과) ;
  • 이경구 (단국대학교 건축공학과) ;
  • 구지모 (단국대학교 건축공학과)
  • Received : 2021.10.14
  • Accepted : 2021.11.10
  • Published : 2021.12.31

Abstract

Interest in the seismic performance of nuclear facilities under strong earthquakes has increased because their nonlinear response is important. In this paper, we proposed appropriate parameters for the nonlinear finite element analysis of a concrete material model, for a reinforced concrete (RC) shear wall in nuclear facilities: maximum tensile strength, dilation angle, and damage parameter. The study of the effects of the important parameters, on the nonlinear behavior and shear failure mode of the RC shear wall having low aspect ratio, was conducted using ABAQUS finite element analysis program. Based on the study results the nonlinear response of a nuclear reactor containment building (RCB) subjected to a strong earthquake was evaluated using nonlinear time-history analysis.

강진 시 원자력발전시설의 비선형 응답이 중요하기 때문에 이 시설의 내진성능에 대한 관심이 증가하였다. 이 연구에서는 원자력 발전소 철근콘크리트 전단벽의 유한요소해석을 위한 재료모델의 적절한 변수를 제시하였다: 최대인장강도, 팽창각, 손상계수. 이를 위해 상용 유한요소 해석프로그램인 ABAQUS를 사용하여 낮은 형상비를 가진 철근콘크리트 전단벽의 비선형 거동과 전단 파괴모드에 대한 이 주요 변수의 효과에 대한 연구를 수행하였다. 연구결과에 기반하여 비선형 시간이력해석을 통해 강진 하의 원자로건물의 비선형 응답을 평가하였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(20193110100020, 해외 내진분석 기술기준을 적용한 표준형원전 설계초과지진대응 기술개발).

References

  1. Abaqus (2020a) Abaqus Analysis User's Guide, Dassault Systems Simulia Corp.
  2. Abaqus (2020b) Abaqus Verification Guide, Dassault Systems Simulia Corp.
  3. American Society of Civil Engineers (ASCE) (2021) Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, American Society of Civil Engineers.
  4. Committee on the Safety of Nuclear Installation (1996) Seismic Shear Wall ISP NUPEC's Seismic Ultimate Dynamic Response Test: Comparison Report(OCDE/GD(96)188), Paris, France; Organization for Economic Co-operation and Development (OECD), NEA/CSNI/R(96)10.
  5. Jankowiak, T., Lodygowski, T. (2005) Identification of Parameters of Concrete Damage Plasticity Constitutive Model, Found. Civil & Eng., 6(1), pp.53~69.
  6. Kent, D.C., Park, R. (1971) Flexural Members with Confined Concrete, J. Struct. Div., 97(7), pp.1969~1990. https://doi.org/10.1061/JSDEAG.0002957
  7. Korea Construction Standards Center (2021) Korea Design Standard: Bending and Compression Design Criteria for Concrete Structure(KDS 14 20 20), The Ministry of Land, Infrastructure and Transport.
  8. Ming, L., Shiping, Y., Wenjie, C. (2019) Seismic Behaviour of TRC-Strengthened RC Columns under Different Constraint Conditions, Sci. & Eng. Compos. Mater., 26(1), pp.360~378. https://doi.org/10.1515/secm-2019-0021
  9. Okamura, H., Maekawa, K., Sicasubramaniyam, S. (1985) Verification of Modeling for Reinforced Concrete Finite Element, Finite Element Analysis of Reinforced Concrete Structures, pp.528~543.
  10. Yaper, O., Basu, P.K., Nordendale, N. (2015) Accurate Finite Element Modeling of Pretensioned Prestressed Concrete Beams, Eng. Struct., 101, pp.163~178. https://doi.org/10.1016/j.engstruct.2015.07.018
  11. Yoo, S.W., Yoo, J.S. (2019) Influence of Various Parameter fo Bending/Shear Behavior Analysis of FRP Composite Beam Using Concrete Damaged Plasticity Model, J. Korean Soc. Adv. Comp. Struc., 10(4), pp.1~7. https://doi.org/10.11004/kosacs.2019.10.4.001