DOI QR코드

DOI QR Code

Analysis of Rebound Behavior of Blast-Resistant Door Subjected to Blast Pressure

폭압 작용에 의한 방폭문의 반발거동 해석

  • Shin, Hyun-Seop (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology(KICT))
  • 신현섭 (한국건설기술연구원 구조연구본부)
  • Received : 2021.09.27
  • Accepted : 2021.10.21
  • Published : 2021.12.31

Abstract

Steel-concrete single-leaf blast-resistant doors, having steel box and slab inside, are installed on the wall using supporting members such as hinges and latches. Several studies have been conducted on their deflection behavior in the same direction as that of the blast pressure, but studies on their deflection behavior in the opposite direction, that is, studies on negative deflection behavior are relatively insufficient. In this study, we conducted a parameter analysis using finite element analysis on blast-resistant doors, on their rebound behavior in the negative deflection phase. Results revealed that the plastic deformation of the door, and the change in momentum and kinetic energy during rebound, were major factors influencing the rebound behavior. Greater rebound force was developed on the supporting members in the impulsive region, than in the quasi-static region; due to the characteristics in the impulsive region, where the kinetic energy developed relatively greater than the strain energy. In the design process, it is necessary to consider excessive deformation that could occur in the supporting members as the rebound behavior progresses. Additionally, it was found that in the case of steel-concrete blast doors, the rebound force increased relatively more, when the effects of both rebound and negative blast pressure contributed to the negative deflection of the door. Since conditions for the occurrence of this superposition effect could vary depending on structural characteristics and explosion conditions, further investigation may be required on this topic.

강-콘크리트 편개형 방폭문은 외피 구조로서의 강박스 내에 콘크리트 슬래브가 채워진 구조로서 힌지 및 렛치와 같은 지지부재에 의해 벽체에 고정되어 설치된다. 폭압이 작용하는 방향과 같은 정방향으로의 처짐 거동에 대해서는 많은 연구가 되어 왔으나, 부방향 처짐 거동에 대한 연구는 상대적으로 미흡한 수준이다. 본 연구에서는 폭압을 받는 편개형 방폭문의 부방향 처짐 단계에서 발생하는 반발 거동(rebound behavior)에 대해 유한요소해석으로 변수 분석을 하였다. 분석결과에 따르면 방폭문의 소성변형 내지는 파괴 정도, 반발작용 전후의 운동량 및 운동에너지 변화가 반발거동에 영향을 미치는 주요 요소로 분석되었다. 또한, 방폭문의 거동 특성이 준정적 영역에 속하는 경우에 비해 충격영역에 속하는 경우에서 더 큰 반발력이 발생하는 것으로 나타났는데, 이와 같은 결과는 변형에너지 보다 운동에너지가 상대적으로 더 크게 증가하는 충격영역에서의 거동 특성이 원인인 것으로 사료된다. 반발작용의 결과로 인해 지지부재에 과도한 변형이 발생할 수 있으므로 성능분석 및 설계 과정에서 이에 대한 고려가 필요하다. 또한, 부압이 미치는 영향을 검토한 결과에 따르면 강-콘크리트 방폭문의 경우에서도 반발에 의한 영향 및 부압 모두가 방폭문의 부방향 처짐에 기여할 때 반발력이 상대적으로 더 크게 증가하는 것으로 나타났다. 이와 같은 중첩 효과의 발생조건은 구조체 특성 및 폭발조건 등에 따라 다를 수 있으므로 이에 대해서는 더 많은 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Abedini, M., Mutalib, A.A., Raman, S.N., Alipour, R., Akhlaghi, E. (2019) Pressure-impulse (P-I) Diagrams for Reinforced Concrete (RC) Structures: A Review, Arch. Comput. Methods Eng., 26, pp.733~767. https://doi.org/10.1007/s11831-018-9260-9
  2. Alrasheed, S. (2019) Principles of Mechanics, Advanced in Science, Technology & Innovation, Springer, p.179.
  3. American Society of Civil Engineers (ASCE) (2010) Design of Blast Resistant Buildings in Petrochemical Facilities, 2nd Edition, ASCE Publications.
  4. Amiri, M.M., Yahyai, M. (2013) Estimation of Damping Ratio of TV Towers Based on Ambient Vibration Monitoring, Struct. Des. Tall & Special Build., 22, pp.862~875. https://doi.org/10.1002/tal.733
  5. Chen, W., Hao, H. (2012) Numerical Study of a New Multi-Arch Double-Layered Blast-Resistance Door Panel, Int. J. Impact Eng., 43, pp.16~28. https://doi.org/10.1016/j.ijimpeng.2011.11.010
  6. Conrath, E.J., Krauthammer, T., Marchand, K.A., Mlakar, P.E. (1999) Structural Design for Physical Security: State of Practice, Reston, VA: American Society of Cvil Engineers (ASCE).
  7. Crawford, J.E., Wu, Y., Choi, H.J., Magallanes, J.M., Lan, S. (2012) Use and Validation of the Release III K&C Concrete Material Model in LS-DYNA, Karagozian & Case Technical Report TR-11-36.5, California, U.S.
  8. Dharani, L.R., Wei, J. (2004) Dynamic Response of Laminated Glass under Blast Loading: Effect of Negative Phase, Structures under shock and impact VIII, pp.181~190, Crete, Greece.
  9. Draganic, H., Varevac, D. (2018) Analysis of Blast Wave Parameters Depending on Air Mesh Size, Shock & Vib., 2018, pp.1~18. https://doi.org/10.1155/2018/3157457
  10. Hsieh, M.W., Huang, J.P., Chen, D.J. (2008) Investigation on the Blast Resistance of a Stiffened Door Structure, J. Marine Sci. & Technol., 16(2), pp.149~157.
  11. Huang, X., Ma, G.W., Li, J.C. (2010) Damage Assessment of Reinforced Concrete Structural Elements Subjected to Blast Load, Int. J. Prot. Struct., 1(1), pp.103~124. https://doi.org/10.1260/2041-4196.1.1.103
  12. Jankowski, R. (2007) Theoretical and Experimental Assessment of Parameters for the Non-Linear Viscoelastic Model of Structural Pounding, J. Theor. & Appl. Mech., 45(4), pp.931~942.
  13. Kim, N.H., Park, K.J., Lee, K.O. (2016a) A Study on Structural Stability of Blast Door by Blast Pressure, J. Korean Soc. Safety, 31(3), pp.8~15. https://doi.org/10.14346/JKOSOS.2016.31.3.8
  14. Kim, S.B., Baik, S.H., Lee, J.H., Min, A.S., Koh, Y.C. (2016b) Three Companies Producing CBR Facilities; Explosion Test on the Six Blast-Resistant Doors, Institute of HwaRangDae.
  15. Krauthammer, T., Altenberg, A. (2000) Negative Phase Blast Effects on Glass Panels, Int. J. Impact Eng., 24(1), pp.1~17. https://doi.org/10.1016/S0734-743X(99)00043-3
  16. Kristensson, R., Carlsson, M. (2012) Structural Response with Regard to Explosions - Mode Superposition, Damping and Curtailment, Master Thesis, Lund University, Lund, Sweden.
  17. Kuda, F.N., Ucak, S., Osmancikli, G., Turker, T., Bayraktar, A. (2015) Estimation of Damping Ratios of Steel Structures by Operational Modal Analysis Method, J. Constr. Steel Res., 112, pp.61~68. https://doi.org/10.1016/j.jcsr.2015.04.019
  18. Livermore Software Technology Corporation (LSTC) (2017) LS-DYNA S/W and User's Manuals.
  19. Ministry of National Defense (MND) (2009) Standards for National Defense and Military Facilities, DMFC 5-30-20, p.74.
  20. Naito, C., Oswald, C. (2014) Blast-Resistant Design of Precast, Prestressed Concrete Components, PCI J. Precast/Prestress. Concr. Inst., 59(1), pp.137~159.
  21. National Emergency Management Agency (NEMA) (2008) A Study on the Standards and Utilization Plan of CBR Facilities, Policy Research Report, Republic of Korea.
  22. Shin, H.S., Kim, S.W., Moon, J.H., Kim, W.W., Hong, W.H. (2020) Failure Behavior Analysis of Single-leaf Blast- resistant Door By Explosion Loads, J. Korean Soc. Hazard Mitig., 20(4), pp.195~206. https://doi.org/10.9798/kosham.2020.20.4.195
  23. Shin, H.S., Kim, W.W., Park, G.J., Lee, N.K., Moon, J.H., Kim, S.W. (2019) FE Analysis on the Structural Behavior of the Single-leaf Blast-Resistant Door According to Design Parameter Variation, J. Korea Acad.-Ind. Cooper. Soc., 20(11), pp.259~272. https://doi.org/10.5762/KAIS.2019.20.11.259
  24. Targ, S.M. (1963) Short Course of Theoretical Mechanics, Moscow: Gos. izd. fiz-mat, lit.
  25. Tsai, Y.K. (2015) Energy Based Load-Impulse Diagrams for Structural Elements, Dissertation, University of Florida, U.S.A.
  26. U.S. Department of Defense (U.S. DoD) (2008) Unified Facilities Criteria; Structures to Resist the Effects of Accidental Explosions, UFC 3-340-02.
  27. Yan, Q., Guo, D. (2018) Rebound Effects of Loading Conditions for Blast Door, Mech. Adv. Mater.& Struct., 26(22), pp.1833~1840. https://doi.org/10.1080/15376494.2018.1452315
  28. Zhang, X., Zhao, X., Zhang, Y., Li, Z. (2012) A One-Point Quadrature Element Used in Simulation of Cold Ring Rolling Process, Mater. Sci. Forum, 704/705, pp.165~171. https://doi.org/10.4028/www.scientific.net/MSF.704-705.165