DOI QR코드

DOI QR Code

Thermodynamic Performance Characterictics of a Tri-Cogeneration System Based on Kalina Cycle Driven by Renewable Energy

신재생에너지로 구동되는 칼리나 사이클 기반 삼중 병합 생산 시스템의 열역학적 성능 특성

  • HAN, CHUL HO (Department of Mechanical System Engineering, Kumoh National Institute of Technology) ;
  • KIM, KYOUNG HOON (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • JUNG, YOUNG GUAN (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 한철호 (금오공과대학교 기계시스템공학과) ;
  • 김경훈 (금오공과대학교 기계공학과) ;
  • 정영관 (금오공과대학교 기계공학과)
  • Received : 2021.11.03
  • Accepted : 2021.12.14
  • Published : 2021.12.30

Abstract

The recently proposed Kalina based power and cooling cogeneration cycles (KPCCCs) have shown improvement in the energy utilization of the system compared to the basic Kalina cycle. This paper suggests a combined tri-cogeneration system for power, heating and cooling based on the Kalina cycle. And thermodynamic performances of the suggested system based on the first and second thermodynamic laws are parametrically investigated with respect to the ammonia mass fraction and the boiler pressure. Results showed that the thermodynamic performance of the system could be greatly improved compared to the former KPCCCs.

Keywords

Acknowledgement

본 연구는 금오공과대학교 교수연구년제에 의하여 연구된 실적물입니다.

References

  1. J. S. Pereira, J. B. Ribeiro, R. Mendes, G. C. Vaz, and V. Andre, "ORC based micro-cogeneration systems for residential application - a state of the art review and current challenges", Renew. Sustain. Energy Rev., Vol. 92, 2018, pp. 728-743, doi: https://doi.org/10.1016/j.rser.2018.04.039.
  2. M. Santos, J. Andre, E. Costa, R. Mendes, and J. Ribeiro, "Design strategy for component and working fluid selection in a domestic micro-CHP ORC boiler", Appl. Therm. Eng. Vol. 169, 2020, pp. 114945, doi: https://doi.org/10.1016/j.applthermaleng.2020.114945.
  3. A.I. Kalina, "Combined cycle system with novel bottoming cycle", ASME J. Eng. Turb. Power, Vol. 106, No. 4, 1984, pp. 737-742, doi: https://doi.org/10.1115/1.3239632.
  4. X. Zhang, M. He, and Y. Zhang, "A review of research on the Kalina cycle", Renewable and Sustainable Energy Reviews, Vol. 16, No. 7, 2012, pp. 5309-5318, doi: http://dx.doi.org/10.1016/j.rser.2012.05.040.
  5. S. Ogriseck, "Integration of Kalina cycle in a combined heat and power plant, a case study", Appl Therm Eng, Vol. 29, No. 14-15, 2009, pp. 2843-2848, doi: https://doi.org/10.1016/j.applthermaleng.2009.02.006.
  6. R. Long, Z. Kuang, B. Li, Z. Liu, and W. Liu, "Exergy analysis and performance optimization of Kalina cycle system 11 (KCS-11) for low grade waste heat recovery", Energy Procedia, Vol. 158, 2019, pp. 1354-1359, doi: https://doi.org/10.1016/j.egypro.2019.01.333.
  7. Z. Liu, N. Xie, and S. Yang, "Thermodynamic and parametric analysis of a coupled LiBr/H2O absorption chiller/Kalina cycle for cascade utilization of low-grade waste heat", Energy Convers. Management, Vol. 205, 2020, pp. 112370, doi: https://doi.org/10.1016/j.enconman.2019.112370.
  8. O. Bamisile, Q. Huang, Q. Huang, M. Dagbasi, V. Adebayo, E. C. Okonkwo, P. N. Ayambire, T. AI-Ansari, and T. A. Ratlamwala, "Thermo-environ study of a concentrated photovoltaic thermal system integrated with Kalina cycle for multigeneration and hydrogen production", Int. J. Hydrogen Energy, Vol. 45, No. 51, 2020, pp. 26716-26732, doi: https://doi.org/10.1016/j.ijhydene.2020.07.029.
  9. H. Ghaebi and H. Rostamzadeh, "Performance comparison of two new cogeneration systems for freshwater and power production based on organic Rankine and Kalina cycles driven by salinity-gradient solar pond", Renewable Energy, Vol. 156, 2020, pp. 748-767, doi: https://doi.org/10.1016/j.renene.2020.04.043.
  10. D. X. Zheng, B. Chen, Y. Qi, and H. G. Jin, "Thermodynamic analysis of a novel absorption power/cooling combined cycle", Appl Energy, Vol. 83, No. 4, 2006, pp. 311-323, doi: https://doi.org/10.1016/j.apenergy.2005.02.006.
  11. J. Y. Hua, Y. P. Chen, Y. D. Wang, and A. P. Roskilly, "Thermodynamic analysis of ammonia-water power/chilling cogeneration cycle with low-grade waste heat", Appl Therm Eng, Vol. 64, 2014, pp. 483-490, doi: http://dx.doi.org/10.1016/J.APPLTHERMALENG.2013.12.043.
  12. J. Rashidi and C. K. Yoo, "A novel Kalina power-cooling cycle w ith an ejector absorption refrigeration cycle: thermodynamic modelling and pinch analysis", Energy Converse M ange, Vol. 162, 2018, pp. 225-238, doi: https://doi.org/10.1016/j.enconman.2018.02.040.
  13. S. Zhang, Y. Chen, J. Wu, and Z. Zhu, "Thermodynamic analysis on a modified Kalina cycle with parallel cogeneration of power and refrigeration," Energy Converse Manage, Vol. 163, 2018, pp. 1-12. doi: https://doi.org/10.1016/j.enconman.2018.02.035.
  14. K. H. Kim, "Thermodynamic analysis of kalina based power and cooling cogeneration cycle employed once through configuration", Energies, Vol. 12, No. 8, 2019, pp. 1536, doi: https://doi.org/10.3390/en12081536.
  15. K. H. Kim, H. J. Ko, and Y. G. Jung, "Performance analysis of a combined cycle of Kalina and absorption refrigeration for recovery of low-temperature heat source", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 5, 2018, pp. 490-496, doi: https://doi.org/10.7316/KHNES.2018.29.5.490.
  16. K. H. Kim and Y. G. Jung, "Exergy and entransy performance characteristics of cogeneration system in series circuit using low-grade heat source", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 6, 2020, pp. 637-645, doi: https://doi.org/10.7316/KHNES.2020.31.6.637.
  17. F. Xu and D. Y. Goswami, "Thermodynamic properties of ammonia-water mixtures for power-cycle application", Energy, Vol. 24, No. 6, 1999, pp. 525-536, doi: https://doi.org/10.1016/S0360-5442(99)00007-9.
  18. K. H. Kim, C. H. Han, and K. Kim, "Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles", Thermochimica Acta, Vol. 530, 2012, pp. 7-16, doi: https://doi.org/10.1016/j.tca.2011.11.028.