DOI QR코드

DOI QR Code

Numerical Analysis of Fillling Flow in Type III Hydrogen Tank with Different Turbulence Models

Type III 수소 저장 용기에서 난류 모델(Turbulence Model)에 따른 충전(Filling)현상의 수치 해석적 연구

  • KIM, MOO-SUN (Urban Railroad Research Department, Korea Railroad Research Institute) ;
  • RYU, JOON-HYOUNG (Propulsion System Research Department, Korea Railroad Research Institute) ;
  • LEE, SUNG-KWON (Department of Mechanical System Engineering, Gyeongsang National University) ;
  • CHOI, SUNG-WOONG (Department of Mechanical System Engineering, Gyeongsang National University)
  • 김무선 (한국철도기술연구원 도시철도연구팀) ;
  • 류준형 (한국철도기술연구원 추진시스템연구팀) ;
  • 이성권 (경상국립대학교 기계시스템공학과) ;
  • 최성웅 (경상국립대학교 기계시스템공학과)
  • Received : 2021.11.29
  • Accepted : 2021.12.17
  • Published : 2021.12.30

Abstract

With continuous emission of environmental pollutants and an increase in greenhouse gases such as carbon dioxide, demand to seek other types of energy sources, alternative energy, was needed. Hydrogen, an eco-friendly energy, is attracting attention as the ultimate alternative energy medium. Hydrogen storage technology has been studied diversely to utilize hydrogen energy. In this study, the gas behavior of hydrogen in the storage tank was numerically examined under charge conditions for the Tpe III hydrogen tank. Numerical results were compared with the experimental results to verify the numerical implementation. In the results of pressure and temperature values under charge condition, the Realizable k-ε model and Reynold stress model were quantitatively matched with the smallest error between numerical and experimental results.

Keywords

Acknowledgement

본 연구는 국토교통부 철도기술연구개발사업의 연구비지원(21RTRP-B146010-04)에 의해 수행되었다.

References

  1. H. L. Kim, S. K. Kang, Y. S. Huh, and J. S. Moon, "Analysis of overseas hydrogen refueling station design and operation requirements", Proceedings of the Korea Gas Society Conference, 2017, pp. 36-36.
  2. S. J. Oh, J. H. Yoon, K. S. Jeon, J. K. Kim, J. H. Park, and J. Choi, "A study on the characteristics of temperature distribution related to geometry of tube in hydrogen storage vessel", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 4, 2021, pp. 205-211, doi: https://doi.org/10.7316/khnes.2021.32.4.205.
  3. B. E. Lee, H. J. Lee, C. H. Moos, S. B. Moon, and H. K. Lim, "Preliminary economic analysis for H2 transportation using liquid organic H2 carrier to enter H2 economy society in Korea", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 2, 2019, pp. 119-127, doi: https://doi.org/10.7316/KHNES.2019.30.2.119.
  4. M. S. Kim, J. H. Ryu, S. Y. Jung, S. W. Lee, and S. W. Choi, "Numerical analysis of discharge flow in type III hydrogen tank with different gas models", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 6, 2020, pp. 558-563, doi: https://doi.org/10.7316/KHNES.2020.31.6.558.
  5. T. Johnson, R. Bozinoski, J. Ye, G. Startor, J. Zheng, and J. Yang, "Thermal model development and validation for rapid filling of high pressure hydrogen tanks", International Journal of Hydrogen Energy, Vol. 40, No. 31, 2015, pp. 9803-9814, doi: https://doi.org/10.1016/j.ijhydene.2015.05.157.
  6. D. Mori and K. Hirose, "Recent challenges of hydrogen storage technologies for fuel cell vehicles", International Journal of Hydrogen Energy. Vol. 34, No. 10, 2009, pp. 4569-4574, doi: https://doi.org/10.1016/j.ijhydene.2008.07.115.
  7. Y. Z. Zhao, G. S. Liu, Y. L. Liu, J. Y. Zheng, Y. C. Chen, L. Zhao, J. X. Guo, and Y. T. He, "Numerical study on fast filling of 70 MPa type III cylinder for hydrogen vehicle", International Journal of Hydrogen Energy, Vol. 37, No. 22, 2012, pp. 17517-17522, doi: https://doi.org/10.1016/j.ijhydene.2012.03.046.
  8. C. T. Park, "Report on technology roadmap for hydrogen industry in Chungnam region", Chungnam Techno Park, 2017.
  9. J. H. Lee, G. H. Yoo, and S. B. Heo, "High pressure hydrogen gas cylinder for fuel cell vehicle and station", Theories and Applications of Chem. Eng., Vol. 10, No. 1, 2007, pp. 1108-1111. Retrieved from https://www.cheric.org/proceeding_disk/kiche2004s/O1108.pdf.
  10. J. Zheng, J. Guo, J. Yang, Y. Zhao, L. Zhao, X. Pan, J. Ma, and L. Zhang, "Experimental and numerical study on temperature rise within a 70 MPa type III cylinder during fast refueling", International Journal of Hydrogen Energy, Vol. 38, No. 25, 2013, pp. 10956-10962, doi: https://doi.org/10.1016/J.IJHYDENE.2013.02.053.
  11. M. S. Kim, J. H. Ryu, S. J. Oh, J. H. Yang, and S. W. Choi, "Numerical investigation on influence of gas and turbulence model for type III hydrogen tank under discharge condition", Energies, Vol. 13, No. 23, 2020, pp. 6432, doi: https://doi.org/10.3390/en13236432.
  12. A. Suryan, H. D. Kim, and T. Setoguchi, "Three dimensional numerical computations on the fast filling of a hydrogen tank under different conditions", International Journal of Hydrogen Energy, Vol. 37, No. 9, 2012, pp. 7600-7611, doi: https://doi.org/10.1016/j.ijhydene.2012.02.019.
  13. T. Shih, J. Zhu, J. Lumley, "A realizable Reynolds stress algebraic equation model", National Aeronautics and Space Administration, Vol. 105993, 1993.
  14. R. J. Prieler, M. Demuth, D. Spoljaric, and C. Hochenauer, "Numerical investigation of the steady flamelet approach under different combustion environments", Fuel, Vol. 140, 2015, pp. 731-743, doi : https://doi.org/10.1016/j.fuel.2014.10.006.