DOI QR코드

DOI QR Code

교과 연계 진로 탐색을 위한 인공지능 기반 고교 선택교과 및 대학 학과 추천 시스템

Artificial Intelligence-Based High School Course and University Major Recommendation System for Course-Related Career Exploration

  • 백진헌 (한국과학기술원 인공지능대학원) ;
  • 김하연 (서울대학교 국어교육과) ;
  • 권기원 (한국방송통신대학교 이러닝학과)
  • 투고 : 2020.10.15
  • 심사 : 2020.11.05
  • 발행 : 2021.01.31

초록

4차 산업 혁명 시대의 도래에 따라 직업 환경의 변화가 가속화되고 있으며, 이와 함께 교육의 패러다임이 자유학기제와 고교학점제에 바탕을 둔 진로교육을 중심으로 변화하고 있다. 하지만, 학생들의 자율적인 진로 탐색을 지향하는 자유학기제 및 고교학점제의 정책적 목표와 달리, 진로교육 콘텐츠의 개발과 이용에 있어 교사 및 학생들의 한계가 존재하고, 이를 뒷받침할 에듀테크 기술 연구 역시 상대적으로 부족한 실정이다. 따라서 본 연구는, 교육 현장에서의 진로교육 실태를 바탕으로, 에듀테크 기술이 교과연계 진로교육과 관련해 갖춰야 할 요구조건을 세 가지로 정의하였다. 다음으로 데이터 기반 인공지능 기술을 통해, 진로탐색용 탐구주제와 고교 과목, 그리고 대학에서 수학 가능한 전공을 아우를 수 있는 데이터 시스템 및 인공지능 추천 모델을 제안하였다. 마지막으로 실험을 통해, 셋 인코딩-디코딩 기반 인공지능 추천 모델이 진로교육 콘텐츠 추천에서 만족할 만한 성능을 보이는 것을 확인하였고, 교육 현장에서의 실제 적용 결과 또한 만족스럽다는 것을 확인하였다.

Recent advances in the 4th Industrial Revolution have accelerated the change of the working environment, such that the paradigm of education has been shifted in accordance with career education including the free semester system and the high school credit system. While the purpose of those systems is students' self-motivated career exploration, educational limitations for teachers and students exist due to the rapid change of the information on education. Also, education technology research to tackle these limitations is relatively insufficient. To this end, this study first defines three requirements that education technologies for the career education system should consider. Then, through data-driven artificial intelligence technology, this study proposes a data system and an artificial intelligence recommendation model that incorporates the topics for career exploration, courses, and majors in one scheme. Finally, this study demonstrates that the set-based artificial intelligence model shows satisfactory performances on recommending career education contents such as courses and majors, and further confirms that the actual application of this system in the educational field is acceptable.

키워드

참고문헌

  1. J. Y. Choi et al., "This is the 4th industrial revolution," Maeil Business News, 2017.
  2. Ministry of Education, "A Plan for the Implementation of the Free Semester System in Middle School," 2016.
  3. Samcheok Office of Education, The Concept of Free School Year System [Internet], http://www.kwsche.go.kr/sub/info.do?m=020601.
  4. Korean Educational Development Institute, Introduction of High School Credit System [Internet], https://www.hscredit.kr/common/menu/html/900900001/detailPotal.do.
  5. N. Kim, H. Lee, Y. Lee, Y. Jeong, and Y. Cho, "Analysis of experiences and effects of high school teachers' subjects-related career education classes using grounded theory," The Study of Career Education, Vol.31, No.2, pp.27-50, 2018.
  6. E. Hyeon, "The Effect of Free Semester Creative Career Education Program on Media Convergence Design," NRF KRM(Korean Research Memory), 2015.
  7. J. Lee, M. Park, M. So, and S. Ahn, "Corona19 and Education: Focusing on the Life and Perception of School Members," Gyeonggi Institute of Education, pp.162-168, 2020.
  8. M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. J. Smola "Deep Sets," in Proceedings of Advances in Neural Information Processing Systems, pp.3391-3401, 2017.
  9. Free-Semester Website [Internet], www.ggoomggi.go.kr.
  10. J. Kim, "A Study on Changes to Students Academic Records according to Their Satisfaction with the Free Semester System before and after Its Implementation (2015-2017)," The Journal of Learner-Centered Curriculum and Instruction, Vol.18, No.18, pp.293-316, 2018.
  11. S. Lee and S. Baek, "Exploring the Possibility of Expanding the Choice of High School Credit System," The Journal of Korean Teacher Education, Vol.36, No.2, pp.49-73, 2019. https://doi.org/10.24211/TJKTE.2019.36.2.49
  12. G. Park, Y. Joo, and I. Lee, "An analysis on the role of school members for stable settlement of the High School Credit System," Journal of Research in Education, Vol.32, No.4, pp.87-113, 2019.
  13. Y. Kim and A. Choi, "Teacher Perception and Practice on Free Semester Science Assessment," Journal of the Korean Association for Science Education, Vol.39, No.1, pp.143-160, 2019. https://doi.org/10.14697/JKASE.2019.39.1.143
  14. J. Seo and S. Shin, "A Case Study on the Effectiveness of Major-friendly Contents in Software Education for the Non-majors," Journal of Digital Convergence, Vol.18 No.5, pp.55-63, 2020. https://doi.org/10.14400/JDC.2020.18.5.055
  15. H. Seo and S. Kyun, "An analysis of research published in Korean Journal with the theme of 'education & AI', using semantic network analysis," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, Vol.9 No.11, pp.209-217, 2019.
  16. W. Shin and D. Shin, "A Study on the Application of Artificial Intelligence in Elementary Science Education," Elementary Science Education, Vol.39, No1, pp.117-132, 2020.
  17. B. Shi, S. Bai, Z. Zhou, and X. Bai, "DeepPano: Deep Panoramic Representation for 3-D Shape Recognition," IEEE Signal Processing Letters, Vol.22, No.12, pp.2339-2343, 2015. https://doi.org/10.1109/LSP.2015.2480802
  18. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," IEEE Conference on Computer Vision and Pattern Recognition, pp.77-85, 2017.
  19. P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. J. Guibas, "Learning Representations and Generative Models for 3D Point Clouds," Proceedings of the 35th International Conference on Machine Learning, pp.40-49, 2018.
  20. L. Yi, W. Zhao, H. Wang, M. Sung, and L. J. Guibas, "GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud," IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.3947-3956.
  21. Y. Lee and S. Choi, "Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace," Proceedings of the 35th International Conference on Machine Learning, pp.2933-2942, 2018.
  22. J. Snell, K. Swersky, and R. S. Zemel, "Prototypical Networks for Few-shot Learning," Advances in Neural Information Processing Systems, pp.4077-4087, 2017.
  23. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is All you Need," Advances in Neural Information Processing Systems, pp.5998-6008, 2017.
  24. J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi, and Y. W. Teh, "Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks," Proceedings of the 35th International Conference on Machine Learning, pp.3744-3753, 2019.
  25. National Curriculum Information Center, 2015 Curriculum [Internet], https://ncic.re.kr/.
  26. Higher Education in Korea, Standard Classification System [Internet], https://www.academyinfo.go.kr/mjrinfo/mjrinfo0460/doInit.do.
  27. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li, "ImageNet Large Scale Visual Recognition Challenge," International Journal of Computer Vision, Vol.115 No.3, pp.211-252, 2015. https://doi.org/10.1007/s11263-015-0816-y
  28. J. Devlin, M. Chang, K. Lee, and K. Toutanova, "BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding," Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.4171-4186, 2019.
  29. D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," 3rd International Conference on Learning Representations, 2015.