Acknowledgement
This work was supported by the National Research Foundation (NRF-2018M3A9H3024611), Republic of Korea and National Research Council of Science and Technology (NST) funded by the Ministry of Science and ICT (Grant No. CRC-16-01-KRICT), Republic of Korea. Figures were created with BioRender.com.
References
- Mittal D, Gubin MM, Schreiber RD and Smyth MJ (2014) New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol 27, 16-25 https://doi.org/10.1016/j.coi.2014.01.004
- Chen Daniel S and Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1-10 https://doi.org/10.1016/j.immuni.2013.07.012
- Gaudino SJ and Kumar P (2019) Cross-talk between antigen presenting cells and T cells impacts intestinal homeostasis, bacterial infections, and tumorigenesis. Front Immunol 10, 360 https://doi.org/10.3389/fimmu.2019.00360
- Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF and Sancho D (2020) Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 20, 7-24 https://doi.org/10.1038/s41577-019-0210-z
- Gardner A, de Mingo Pulido A and Ruffell B (2020) Dendritic cells and their role in immunotherapy. Front Immunol 11, 924-924 https://doi.org/10.3389/fimmu.2020.00924
- Hildner K, Edelson BT, Purtha WE et al (2008) Batf3 deficiency reveals a critical role for CD8α dendritic cells in cytotoxic T cell immunity. Science 322, 1097-1100 https://doi.org/10.1126/science.1164206
- Sánchez-Paulete AR, Cueto FJ, Martinez-López M et al (2016) Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov 6, 71-79 https://doi.org/10.1158/2159-8290.CD-15-0510
- Spranger S, Dai D, Horton B and Gajewski TF (2017) Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711-723.e714 https://doi.org/10.1016/j.ccell.2017.04.003
- Jongbloed SL, Kassianos AJ, McDonald KJ et al (2010) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207, 1247-1260 https://doi.org/10.1084/jem.20092140
- Broz Miranda L, Binnewies M, Boldajipour B et al (2014) Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638-652 https://doi.org/10.1016/j.ccell.2014.09.007
- Roberts EW, Broz ML, Binnewies M et al (2016) Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324-336 https://doi.org/10.1016/j.ccell.2016.06.003
- Binnewies M, Mujal AM, Pollack JL et al (2019) Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177, 556-571.e516 https://doi.org/10.1016/j.cell.2019.02.005
- Ferris ST, Durai V, Wu R et al (2020) cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624-629 https://doi.org/10.1038/s41586-020-2611-3
- Salmon H, Idoyaga J, Rahman A et al (2016) Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924-938 https://doi.org/10.1016/j.immuni.2016.03.012
- Novak L, Igoucheva O, Cho S and Alexeev V (2007) Characterization of the CCL21-mediated melanoma-specific immune responses and in situ melanoma eradication. Mol Cancer Ther 6, 1755 https://doi.org/10.1158/1535-7163.MCT-06-0709
- Shields JD, Kourtis IC, Tomei AA, Roberts JM and Swartz MA (2010) Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749 https://doi.org/10.1126/science.1185837
- Bottcher JP and Reis e Sousa C (2018) The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer 4, 784-792 https://doi.org/10.1016/j.trecan.2018.09.001
- Dannull J, Nair S, Su Z et al (2005) Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood 105, 3206-3213 https://doi.org/10.1182/blood-2004-10-3944
- Buchan SL, Fallatah M, Thirdborough SM et al (2018) PD-1 blockade and CD27 stimulation activate distinct transcriptional programs that synergize for CD8+ T-cell-driven antitumor immunity. Clin Cancer Res 24, 2383-2394 https://doi.org/10.1158/1078-0432.CCR-17-3057
- Martinez-López M, Iborra S, Conde-Garrosa R and Sancho D (2015) Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice. Eur J Immunol 45, 119-129 https://doi.org/10.1002/eji.201444651
- Ruffell B, Chang-Strachan D, Chan V et al (2014) Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623-637 https://doi.org/10.1016/j.ccell.2014.09.006
- Chow MT, Ozga AJ, Servis RL et al (2019) Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498-1512. e1495 https://doi.org/10.1016/j.immuni.2019.04.010
- Enamorado M, Iborra S, Priego E et al (2017) Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nature 8, 16073
- Mittal D, Vijayan D, Putz EM et al (2017) Interleukin-12 from CD103+ Batf3-dependent dendritic cells required for NK-cell suppression of metastasis. Cancer Immnol 5, 1098 https://doi.org/10.1158/2326-6066.CIR-17-0341
- Bottcher JP, Bonavita E, Chakravarty P et al (2018) NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022-1037.e1014 https://doi.org/10.1016/j.cell.2018.01.004
- Barry KC, Hsu J, Broz ML et al (2018) A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med 24, 1178-1191 https://doi.org/10.1038/s41591-018-0085-8
- Maier B, Leader AM, Chen ST et al (2020) A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257-262 https://doi.org/10.1038/s41586-020-2134-y
- Zong J, Keskinov AA, Shurin GV and Shurin MR (2016) Tumor-derived factors modulating dendritic cell function. Cancer Immnol Immunother 65, 821-833 https://doi.org/10.1007/s00262-016-1820-y
- Gottfried E, Kunz-Schughart LA, Ebner S et al (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107, 2013-2021 https://doi.org/10.1182/blood-2005-05-1795
- Xu MM, Pu Y, Han D et al (2017) Dendritic cells but not macrophages sense tumor mitochondrial DNA for crosspriming through signal regulatory protein α signaling. Immunity 47, 363-373.e365 https://doi.org/10.1016/j.immuni.2017.07.016
- Villablanca EJ, Raccosta L, Zhou D et al (2010) Tumormediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med 16, 98-105 https://doi.org/10.1038/nm.2074
- Villadangos JA and Young L (2008) Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29, 352-361 https://doi.org/10.1016/j.immuni.2008.09.002
- Zitvogel L, Galluzzi L, Kepp O, Smyth MJ and Kroemer G (2015) Type I interferons in anticancer immunity. Nat Rev Immunol 15, 405-414 https://doi.org/10.1038/nri3845
- Fuertes MB, Kacha AK, Kline J et al (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8+ dendritic cells. J Exp Med 208, 2005-2016 https://doi.org/10.1084/jem.20101159
- Diamond MS, Kinder M, Matsushita H et al (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208, 1989-2003 https://doi.org/10.1084/jem.20101158
- Zilionis R, Engblom C, Pfirschke C et al (2019) Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317-1334.e1310 https://doi.org/10.1016/j.immuni.2019.03.009
- Aspord C, Leccia M-T, Charles J and Plumas J (2013) Plasmacytoid dendritic cells support melanoma progression by promoting Th2 and regulatory immunity through OX40L and ICOSL. Cancer Immunol Res 1, 402 https://doi.org/10.1158/2326-6066.CIR-13-0114-T
- Conrad C, Gregorio J, Wang Y-H et al (2012) Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via icos costimulation of Foxp3+ T-regulatory cells. Cancer Res 72, 5240 https://doi.org/10.1158/0008-5472.CAN-12-2271
- Faget J, Bendriss-Vermare N, Gobert M et al (2012) ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells. Cancer Res 72, 6130 https://doi.org/10.1158/0008-5472.CAN-12-2409
- Labidi-Galy SI, Treilleux I, Goddard-Leon S et al (2012) Plasmacytoid dendritic cells infiltrating ovarian cancer are associated with poor prognosis. OncoImmunology 1, 380-382 https://doi.org/10.4161/onci.18801
- Pedroza-Gonzalez A, Zhou G, Vargas-Mendez E et al (2015) Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors. Oncoimmunology 4, e1008355-e1008355
- Treilleux I, Blay J-Y, Bendriss-Vermare N et al (2004) Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res 10, 7466 https://doi.org/10.1158/1078-0432.CCR-04-0684
- Wei S, Kryczek I, Zou L et al (2005) Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res 65, 5020 https://doi.org/10.1158/0008-5472.CAN-04-4043
- Sisirak V, Vey N, Goutagny N et al (2013) Breast cancer-derived transforming growth factor-β and tumor necrosis factor-α compromise interferon-α production by tumor-associated plasmacytoid dendritic cells. Int J Cancer 133, 771-778 https://doi.org/10.1002/ijc.28072
- Terra M, Oberkampf M, Fayolle C et al (2018) Tumorderived TGFβ alters the ability of plasmacytoid dendritic cells to respond to innate immune signaling. Cancer Res 78, 3014 https://doi.org/10.1158/0008-5472.CAN-17-2719
- Bruchhage K-L, Heinrichs S, Wollenberg B and Pries R (2018) IL-10 in the microenvironment of HNSCC inhibits the CpG ODN induced IFN-α secretion of pDCs. Oncol Lett 15, 3985-3990
- Bi E, Li R, Bover LC et al (2018) E-cadherin expression on multiple myeloma cells activates tumor-promoting properties in plasmacytoid DCs. J Clin Investig 128, 4821-4831 https://doi.org/10.1172/jci121421
- Nakano H, Lin KL, Yanagita M et al (2009) Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat Immunol 10, 394-402 https://doi.org/10.1038/ni.1707
- Sharma MD, Rodriguez PC, Koehn BH et al (2018) Activation of p53 in immature myeloid precursor cells controls differentiation into Ly6c+ CD103+ monocytic antigen-presenting cells in tumors. Immunity 48, 91-106.e106 https://doi.org/10.1016/j.immuni.2017.12.014
- Diao J, Gu H, Tang M, Zhao J and Cattral MS (2018) Tumor dendritic cells (DCs) derived from precursors of conventional DCs are dispensable for intratumor CTL responses. J Immunol 201, 1306 https://doi.org/10.4049/jimmunol.1701514
- Qian B-Z, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222-225 https://doi.org/10.1038/nature10138
- Spary LK, Salimu J, Webber JP, Clayton A, Mason MD and Tabi Z (2014) Tumor stroma-derived factors skew monocyte to dendritic cell differentiation toward a suppressive CD14+ PD-L1+ phenotype in prostate cancer. Oncoimmunology 3, e955331 https://doi.org/10.4161/21624011.2014.955331
- Laoui D, Keirsse J, Morias Y et al (2016) The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nat Commun 7, 13720 https://doi.org/10.1038/ncomms13720
- Bakdash G, Buschow SI, Gorris MAJ et al (2016) Expansion of a BDCA1+ CD14+ myeloid cell population in melanoma patients may attenuate the efficacy of dendritic cell vaccines. Cancer Res 76, 4332 https://doi.org/10.1158/0008-5472.CAN-15-1695
- Deng L, Liang H, Xu M et al (2014) STING-dependent cytosolic dna sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843-852 https://doi.org/10.1016/j.immuni.2014.10.019
- Ghiringhelli F, Apetoh L, Tesniere A et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat Med 15, 1170-1178 https://doi.org/10.1038/nm.2028
- Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13, 1050-1059 https://doi.org/10.1038/nm1622
- Vacchelli E, Ma Y, Baracco EE et al (2015) Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350, 972-978 https://doi.org/10.1126/science.aad0779
- Lecciso M, Ocadlikova D, Sangaletti S et al (2017) ATP release from chemotherapy-treated dying leukemia cells elicits an immune suppressive effect by increasing regulatory T cells and tolerogenic dendritic cells. Front Immunol 8, 1918 https://doi.org/10.3389/fimmu.2017.01918
- Vanpouille-Box C, Alard A, Aryankalayil MJ et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8, 15618 https://doi.org/10.1038/ncomms15618
- Hou Y, Liang H, Rao E et al (2018) Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity 49, 490-503.e494 https://doi.org/10.1016/j.immuni.2018.07.008
- Marigo I, Zilio S, Desantis G et al (2016) T cell cancer therapy requires CD40-CD40L activation of tumor necrosis factor and inducible nitric-oxide-synthase-producing dendritic cells. Cancer Cell 30, 377-390 https://doi.org/10.1016/j.ccell.2016.08.004
- Oba T, Hoki T, Yamauchi T et al (2020) A critical role of CD40 and CD70 signaling in conventional type 1 dendritic cells in expansion and antitumor efficacy of adoptively transferred tumor-specific T cells. J Immunol 205, 1867-1877 https://doi.org/10.4049/jimmunol.2000347
- Kalbasi A and Ribas A (2020) Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol 20, 25-39 https://doi.org/10.1038/s41577-019-0218-4
- Mayoux M, Roller A, Pulko V et al (2020) Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci Transl Med 12, eaav7431 https://doi.org/10.1126/scitranslmed.aav7431
- Schetters STT, Rodriguez E, Kruijssen LJW et al (2020) Monocyte-derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy. J Immunother Cancer 8, e000588 https://doi.org/10.1136/jitc-2020-000588
- Morrison AH, Diamond MS, Hay CA, Byrne KT and Vonderheide RH (2020) Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity. Proc Natl Acad Sci U S A 117, 8022 https://doi.org/10.1073/pnas.1918971117
- Garris CS, Arlauckas SP, Kohler RH et al (2018) Successful anti-PD-1 cancer immunotherapy requires T cell- dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148-1161.e1147 https://doi.org/10.1016/j.immuni.2018.09.024
- Cauwels A, Van Lint S, Paul F et al (2018) Delivering type I interferon to dendritic cells empowers tumor eradication and immune combination treatments. Cancer Res 78, 463 https://doi.org/10.1158/0008-5472.CAN-17-1980
- Wang H, Hu S, Chen X et al (2017) cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci U S A 114, 1637 https://doi.org/10.1073/pnas.1621363114
- Alloatti A, Rookhuizen DC, Joannas L et al (2017) Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J Exp Med 214, 2231-2241 https://doi.org/10.1084/jem.20170229
- Nemunaitis J (2005) Vaccines in cancer: GVAXⓇ, a GM-CSF gene vaccine. Expert Rev Vaccines 4, 259-274 https://doi.org/10.1586/14760584.4.3.259
- Yan W-L, Shen K-Y, Tien C-Y, Chen Y-A and Liu S-J (2017) Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy 9, 347-360 https://doi.org/10.2217/imt-2016-0141
- Bommareddy PK, Patel A, Hossain S and Kaufman HL (2017) Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am J Clin Dermatol 18, 1-15 https://doi.org/10.1007/s40257-016-0238-9
- Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS and Kim-Schulze S (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding gm-csf in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17, 718-730 https://doi.org/10.1245/s10434-009-0809-6
- Robinson RA, DeVita VT, Levy HB, Baron S, Hubbard SP and Levine AS (1976) A phase I-II trial of multipledose polyriboinosinic-polyribocytidylic acid in patients with leukemia or solid tumors. J Natl Cancer Inst 57, 599-602 https://doi.org/10.1093/jnci/57.3.599
- Kyi C, Roudko V, Sabado R et al (2018) Therapeutic immune modulation against solid cancers with intratumoral poly-ICLC: a pilot trial. Clin Cancer Res 24, 4937-4948 https://doi.org/10.1158/1078-0432.CCR-17-1866
- Navabi H, Jasani B, Reece A et al (2009) A clinical grade poly I:C-analogue (AmpligenⓇ) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro. Vaccine 27, 107-115 https://doi.org/10.1016/j.vaccine.2008.10.024
- Aznar MA, Planelles L, Perez-Olivares M et al (2019) Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J Immunother Cancer 7, 116 https://doi.org/10.1186/s40425-019-0568-2
- Corrales L, Glickman Laura H, McWhirter Sarah M et al (2015) Direct activation of sting in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11, 1018-1030 https://doi.org/10.1016/j.celrep.2015.04.031
- Finn OJ (2017) Human tumor antigens yesterday, today, and tomorrow. Cancer Immunol Res 5, 347 https://doi.org/10.1158/2326-6066.CIR-17-0112
- Harari A, Graciotti M, Bassani-Sternberg M and Kandalaft LE (2020) Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov 19, 635-652 https://doi.org/10.1038/s41573-020-0074-8
- Gleisner MA, Pereda C, Tittarelli A et al (2020) A heatshocked melanoma cell lysate vaccine enhances tumor infiltration by prototypic effector T cells inhibiting tumor growth. J Immunother Cancer 8, e000999 https://doi.org/10.1136/jitc-2020-000999
- Callmann CE, Cole LE, Kusmierz CD, Huang Z, Horiuchi D and Mirkin CA (2020) Tumor cell lysate-loaded immunostimulatory spherical nucleic acids as therapeutics for triple-negative breast cancer. Proc Natl Acad Sci U S A 117, 17543 https://doi.org/10.1073/pnas.2005794117
- Yarchoan M, Johnson BA, Lutz ER, Laheru DA and Jaffee EM (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17, 209-222 https://doi.org/10.1038/nrc.2016.154
- Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124-128 https://doi.org/10.1126/science.aaa1348
- Balachandran VP, Luksza M, Zhao JN et al (2017) Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512-516 https://doi.org/10.1038/nature24462
- Ott PA, Hu Z, Keskin DB et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217-221 https://doi.org/10.1038/nature22991
- Keskin DB, Anandappa AJ, Sun J et al (2019) Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234-239 https://doi.org/10.1038/s41586-018-0792-9
- Kim JH, Lee Y, Bae Y-S et al (2007) Phase I/II study of immunotherapy using autologous tumor lysate-pulsed dendritic cells in patients with metastatic renal cell carcinoma. Clin Immunol 125, 257-267 https://doi.org/10.1016/j.clim.2007.07.014
- Powell A, Creaney J, Broomfield S, Van Bruggen I and Robinson B (2006) Recombinant GM-CSF plus autologous tumor cells as a vaccine for patients with mesothelioma. Lung Cancer 52, 189-197 https://doi.org/10.1016/j.lungcan.2006.01.007
- Tsuji T, Matsuzaki J, Kelly MP et al (2011) Antibody-targeted NY-ESO-1 to mannose receptor or DEC-205 in vitro elicits dual human CD8+ and CD4+ T cell responses with broad antigen specificity. J Immunol 186, 1218 https://doi.org/10.4049/jimmunol.1000808
- Birkholz K, Schwenkert M, Kellner C et al (2010) Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation. Blood 116, 2277-2285 https://doi.org/10.1182/blood.v116.21.2277.2277
- Anguille S, Smits EL, Lion E, van Tendeloo VF and Berneman ZN (2014) Clinical use of dendritic cells for cancer therapy. Lancet Oncol 15, e257-e267 https://doi.org/10.1016/S1470-2045(13)70585-0
- Draube A, Klein-González N, Mattheus S et al (2011) Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS One 6, e18801 https://doi.org/10.1371/journal.pone.0018801
- Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363, 411-422 https://doi.org/10.1056/NEJMoa1001294
- Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO and Kandalaft LE (2019) Personalized dendritic cell vaccines-recent breakthroughs and encouraging clinical results. Front Immunol 10, 766 https://doi.org/10.3389/fimmu.2019.00766
- van Willigen WW, Bloemendal M, Gerritsen WR, Schreibelt G, de Vries IJM and Bol KF (2018) Dendritic cell cancer therapy: vaccinating the right patient at the right time. Front Immunol 9, 2265 https://doi.org/10.3389/fimmu.2018.02265
- Carreno BM, Magrini V, Becker-Hapak M et al (2015) A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803 https://doi.org/10.1126/science.aaa3828
- Perez CR and De Palma M (2019) Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun 10, 5408 https://doi.org/10.1038/s41467-019-13368-y
- Okada N, Mori N, Koretomo R et al (2005) Augmentation of the migratory ability of DC-based vaccine into regional lymph nodes by efficient CCR7 gene transduction. Gene Ther 12, 129-139 https://doi.org/10.1038/sj.gt.3302358
- Yang X, Lian K, Meng T et al (2018) Immune adjuvant targeting micelles allow efficient dendritic cell migration to lymph nodes for enhanced cellular immunity. ACS Appl Mater Interfaces 10, 33532-33544 https://doi.org/10.1021/acsami.8b10081
- Wang J, Iwanowycz S, Yu F et al (2016) microRNA-155 deficiency impairs dendritic cell function in breast cancer. Oncoimmunology 5, e1232223 https://doi.org/10.1080/2162402X.2016.1232223
- Lind EF, Millar DG, Dissanayake D et al (2015) miR-155 upregulation in dendritic cells is sufficient to break tolerance in vivo by negatively regulating SHIP1. J Immunol 195, 4632 https://doi.org/10.4049/jimmunol.1302941
- Wilgenhof S, Corthals J, Heirman C et al (2016) Phase II study of autologous monocyte-derived mrna electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol 34, 1330-1338 https://doi.org/10.1200/JCO.2015.63.4121
- Yang S-C, Hillinger S, Riedl K et al (2004) Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin Cancer Res 10, 2891 https://doi.org/10.1158/1078-0432.CCR-03-0380
- Lee JM, Lee M-H, Garon E et al (2017) Phase I trial of intratumoral injection of CCL21 gene-modified dendritic cells in lung cancer elicits tumor- specific immune responses and CD8+ T-cell infiltration. Clin Cancer Res 23, 4556-4568 https://doi.org/10.1158/1078-0432.CCR-16-2821
- Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC, Melero I and Sancho D (2019) Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer 7, 100 https://doi.org/10.1186/s40425-019-0565-5
- Kadam P and Sharma S (2020) PD-1 immune checkpoint blockade promotes therapeutic cancer vaccine to eradicate lung cancer. Vaccines 8, 317 https://doi.org/10.3390/vaccines8020317
- Teng C-F, Wang T, Wu T-H et al (2020) Combination therapy with dendritic cell vaccine and programmed death ligand 1 immune checkpoint inhibitor for hepatocellular carcinoma in an orthotopic mouse model. Ther Adv Med Oncol 12, 1758835920922034