DOI QR코드

DOI QR Code

The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets

  • Kim, Chae Won (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Kyun-Do (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology) ;
  • Lee, Heung Kyu (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2020.10.19
  • Accepted : 2020.12.03
  • Published : 2021.01.31

Abstract

Dendritic cells (DC), which consist of several different subsets, specialize in antigen presentation and are critical for mediating the innate and adaptive immune responses. DC subsets can be classified into conventional, plasmacytoid, and monocyte-derived DC in the tumor microenvironment, and each subset plays a different role. Because of the role of intratumoral DCs in initiating antitumor immune responses with tumor-derived antigen presentation to T cells, DCs have been targeted in the treatment of cancer. By regulating the functionality of DCs, several DC-based immunotherapies have been developed, including administration of tumor-derived antigens and DC vaccines. In addition, DCs participate in the mechanisms of classical cancer therapies, such as radiation therapy and chemotherapy. Thus, regulating DCs is also important in improving current cancer therapies. Here, we will discuss the role of each DC subset in antitumor immune responses, and the current status of DC-related cancer therapies.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF-2018M3A9H3024611), Republic of Korea and National Research Council of Science and Technology (NST) funded by the Ministry of Science and ICT (Grant No. CRC-16-01-KRICT), Republic of Korea. Figures were created with BioRender.com.

References

  1. Mittal D, Gubin MM, Schreiber RD and Smyth MJ (2014) New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol 27, 16-25 https://doi.org/10.1016/j.coi.2014.01.004
  2. Chen Daniel S and Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1-10 https://doi.org/10.1016/j.immuni.2013.07.012
  3. Gaudino SJ and Kumar P (2019) Cross-talk between antigen presenting cells and T cells impacts intestinal homeostasis, bacterial infections, and tumorigenesis. Front Immunol 10, 360 https://doi.org/10.3389/fimmu.2019.00360
  4. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF and Sancho D (2020) Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 20, 7-24 https://doi.org/10.1038/s41577-019-0210-z
  5. Gardner A, de Mingo Pulido A and Ruffell B (2020) Dendritic cells and their role in immunotherapy. Front Immunol 11, 924-924 https://doi.org/10.3389/fimmu.2020.00924
  6. Hildner K, Edelson BT, Purtha WE et al (2008) Batf3 deficiency reveals a critical role for CD8α dendritic cells in cytotoxic T cell immunity. Science 322, 1097-1100 https://doi.org/10.1126/science.1164206
  7. Sánchez-Paulete AR, Cueto FJ, Martinez-López M et al (2016) Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov 6, 71-79 https://doi.org/10.1158/2159-8290.CD-15-0510
  8. Spranger S, Dai D, Horton B and Gajewski TF (2017) Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711-723.e714 https://doi.org/10.1016/j.ccell.2017.04.003
  9. Jongbloed SL, Kassianos AJ, McDonald KJ et al (2010) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207, 1247-1260 https://doi.org/10.1084/jem.20092140
  10. Broz Miranda L, Binnewies M, Boldajipour B et al (2014) Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638-652 https://doi.org/10.1016/j.ccell.2014.09.007
  11. Roberts EW, Broz ML, Binnewies M et al (2016) Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324-336 https://doi.org/10.1016/j.ccell.2016.06.003
  12. Binnewies M, Mujal AM, Pollack JL et al (2019) Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177, 556-571.e516 https://doi.org/10.1016/j.cell.2019.02.005
  13. Ferris ST, Durai V, Wu R et al (2020) cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624-629 https://doi.org/10.1038/s41586-020-2611-3
  14. Salmon H, Idoyaga J, Rahman A et al (2016) Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924-938 https://doi.org/10.1016/j.immuni.2016.03.012
  15. Novak L, Igoucheva O, Cho S and Alexeev V (2007) Characterization of the CCL21-mediated melanoma-specific immune responses and in situ melanoma eradication. Mol Cancer Ther 6, 1755 https://doi.org/10.1158/1535-7163.MCT-06-0709
  16. Shields JD, Kourtis IC, Tomei AA, Roberts JM and Swartz MA (2010) Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749 https://doi.org/10.1126/science.1185837
  17. Bottcher JP and Reis e Sousa C (2018) The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer 4, 784-792 https://doi.org/10.1016/j.trecan.2018.09.001
  18. Dannull J, Nair S, Su Z et al (2005) Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood 105, 3206-3213 https://doi.org/10.1182/blood-2004-10-3944
  19. Buchan SL, Fallatah M, Thirdborough SM et al (2018) PD-1 blockade and CD27 stimulation activate distinct transcriptional programs that synergize for CD8+ T-cell-driven antitumor immunity. Clin Cancer Res 24, 2383-2394 https://doi.org/10.1158/1078-0432.CCR-17-3057
  20. Martinez-López M, Iborra S, Conde-Garrosa R and Sancho D (2015) Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice. Eur J Immunol 45, 119-129 https://doi.org/10.1002/eji.201444651
  21. Ruffell B, Chang-Strachan D, Chan V et al (2014) Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623-637 https://doi.org/10.1016/j.ccell.2014.09.006
  22. Chow MT, Ozga AJ, Servis RL et al (2019) Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498-1512. e1495 https://doi.org/10.1016/j.immuni.2019.04.010
  23. Enamorado M, Iborra S, Priego E et al (2017) Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nature 8, 16073
  24. Mittal D, Vijayan D, Putz EM et al (2017) Interleukin-12 from CD103+ Batf3-dependent dendritic cells required for NK-cell suppression of metastasis. Cancer Immnol 5, 1098 https://doi.org/10.1158/2326-6066.CIR-17-0341
  25. Bottcher JP, Bonavita E, Chakravarty P et al (2018) NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022-1037.e1014 https://doi.org/10.1016/j.cell.2018.01.004
  26. Barry KC, Hsu J, Broz ML et al (2018) A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med 24, 1178-1191 https://doi.org/10.1038/s41591-018-0085-8
  27. Maier B, Leader AM, Chen ST et al (2020) A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257-262 https://doi.org/10.1038/s41586-020-2134-y
  28. Zong J, Keskinov AA, Shurin GV and Shurin MR (2016) Tumor-derived factors modulating dendritic cell function. Cancer Immnol Immunother 65, 821-833 https://doi.org/10.1007/s00262-016-1820-y
  29. Gottfried E, Kunz-Schughart LA, Ebner S et al (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107, 2013-2021 https://doi.org/10.1182/blood-2005-05-1795
  30. Xu MM, Pu Y, Han D et al (2017) Dendritic cells but not macrophages sense tumor mitochondrial DNA for crosspriming through signal regulatory protein α signaling. Immunity 47, 363-373.e365 https://doi.org/10.1016/j.immuni.2017.07.016
  31. Villablanca EJ, Raccosta L, Zhou D et al (2010) Tumormediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med 16, 98-105 https://doi.org/10.1038/nm.2074
  32. Villadangos JA and Young L (2008) Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29, 352-361 https://doi.org/10.1016/j.immuni.2008.09.002
  33. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ and Kroemer G (2015) Type I interferons in anticancer immunity. Nat Rev Immunol 15, 405-414 https://doi.org/10.1038/nri3845
  34. Fuertes MB, Kacha AK, Kline J et al (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8+ dendritic cells. J Exp Med 208, 2005-2016 https://doi.org/10.1084/jem.20101159
  35. Diamond MS, Kinder M, Matsushita H et al (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208, 1989-2003 https://doi.org/10.1084/jem.20101158
  36. Zilionis R, Engblom C, Pfirschke C et al (2019) Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317-1334.e1310 https://doi.org/10.1016/j.immuni.2019.03.009
  37. Aspord C, Leccia M-T, Charles J and Plumas J (2013) Plasmacytoid dendritic cells support melanoma progression by promoting Th2 and regulatory immunity through OX40L and ICOSL. Cancer Immunol Res 1, 402 https://doi.org/10.1158/2326-6066.CIR-13-0114-T
  38. Conrad C, Gregorio J, Wang Y-H et al (2012) Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via icos costimulation of Foxp3+ T-regulatory cells. Cancer Res 72, 5240 https://doi.org/10.1158/0008-5472.CAN-12-2271
  39. Faget J, Bendriss-Vermare N, Gobert M et al (2012) ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells. Cancer Res 72, 6130 https://doi.org/10.1158/0008-5472.CAN-12-2409
  40. Labidi-Galy SI, Treilleux I, Goddard-Leon S et al (2012) Plasmacytoid dendritic cells infiltrating ovarian cancer are associated with poor prognosis. OncoImmunology 1, 380-382 https://doi.org/10.4161/onci.18801
  41. Pedroza-Gonzalez A, Zhou G, Vargas-Mendez E et al (2015) Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors. Oncoimmunology 4, e1008355-e1008355
  42. Treilleux I, Blay J-Y, Bendriss-Vermare N et al (2004) Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res 10, 7466 https://doi.org/10.1158/1078-0432.CCR-04-0684
  43. Wei S, Kryczek I, Zou L et al (2005) Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res 65, 5020 https://doi.org/10.1158/0008-5472.CAN-04-4043
  44. Sisirak V, Vey N, Goutagny N et al (2013) Breast cancer-derived transforming growth factor-β and tumor necrosis factor-α compromise interferon-α production by tumor-associated plasmacytoid dendritic cells. Int J Cancer 133, 771-778 https://doi.org/10.1002/ijc.28072
  45. Terra M, Oberkampf M, Fayolle C et al (2018) Tumorderived TGFβ alters the ability of plasmacytoid dendritic cells to respond to innate immune signaling. Cancer Res 78, 3014 https://doi.org/10.1158/0008-5472.CAN-17-2719
  46. Bruchhage K-L, Heinrichs S, Wollenberg B and Pries R (2018) IL-10 in the microenvironment of HNSCC inhibits the CpG ODN induced IFN-α secretion of pDCs. Oncol Lett 15, 3985-3990
  47. Bi E, Li R, Bover LC et al (2018) E-cadherin expression on multiple myeloma cells activates tumor-promoting properties in plasmacytoid DCs. J Clin Investig 128, 4821-4831 https://doi.org/10.1172/jci121421
  48. Nakano H, Lin KL, Yanagita M et al (2009) Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat Immunol 10, 394-402 https://doi.org/10.1038/ni.1707
  49. Sharma MD, Rodriguez PC, Koehn BH et al (2018) Activation of p53 in immature myeloid precursor cells controls differentiation into Ly6c+ CD103+ monocytic antigen-presenting cells in tumors. Immunity 48, 91-106.e106 https://doi.org/10.1016/j.immuni.2017.12.014
  50. Diao J, Gu H, Tang M, Zhao J and Cattral MS (2018) Tumor dendritic cells (DCs) derived from precursors of conventional DCs are dispensable for intratumor CTL responses. J Immunol 201, 1306 https://doi.org/10.4049/jimmunol.1701514
  51. Qian B-Z, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222-225 https://doi.org/10.1038/nature10138
  52. Spary LK, Salimu J, Webber JP, Clayton A, Mason MD and Tabi Z (2014) Tumor stroma-derived factors skew monocyte to dendritic cell differentiation toward a suppressive CD14+ PD-L1+ phenotype in prostate cancer. Oncoimmunology 3, e955331 https://doi.org/10.4161/21624011.2014.955331
  53. Laoui D, Keirsse J, Morias Y et al (2016) The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nat Commun 7, 13720 https://doi.org/10.1038/ncomms13720
  54. Bakdash G, Buschow SI, Gorris MAJ et al (2016) Expansion of a BDCA1+ CD14+ myeloid cell population in melanoma patients may attenuate the efficacy of dendritic cell vaccines. Cancer Res 76, 4332 https://doi.org/10.1158/0008-5472.CAN-15-1695
  55. Deng L, Liang H, Xu M et al (2014) STING-dependent cytosolic dna sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843-852 https://doi.org/10.1016/j.immuni.2014.10.019
  56. Ghiringhelli F, Apetoh L, Tesniere A et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat Med 15, 1170-1178 https://doi.org/10.1038/nm.2028
  57. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13, 1050-1059 https://doi.org/10.1038/nm1622
  58. Vacchelli E, Ma Y, Baracco EE et al (2015) Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350, 972-978 https://doi.org/10.1126/science.aad0779
  59. Lecciso M, Ocadlikova D, Sangaletti S et al (2017) ATP release from chemotherapy-treated dying leukemia cells elicits an immune suppressive effect by increasing regulatory T cells and tolerogenic dendritic cells. Front Immunol 8, 1918 https://doi.org/10.3389/fimmu.2017.01918
  60. Vanpouille-Box C, Alard A, Aryankalayil MJ et al (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8, 15618 https://doi.org/10.1038/ncomms15618
  61. Hou Y, Liang H, Rao E et al (2018) Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity 49, 490-503.e494 https://doi.org/10.1016/j.immuni.2018.07.008
  62. Marigo I, Zilio S, Desantis G et al (2016) T cell cancer therapy requires CD40-CD40L activation of tumor necrosis factor and inducible nitric-oxide-synthase-producing dendritic cells. Cancer Cell 30, 377-390 https://doi.org/10.1016/j.ccell.2016.08.004
  63. Oba T, Hoki T, Yamauchi T et al (2020) A critical role of CD40 and CD70 signaling in conventional type 1 dendritic cells in expansion and antitumor efficacy of adoptively transferred tumor-specific T cells. J Immunol 205, 1867-1877 https://doi.org/10.4049/jimmunol.2000347
  64. Kalbasi A and Ribas A (2020) Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol 20, 25-39 https://doi.org/10.1038/s41577-019-0218-4
  65. Mayoux M, Roller A, Pulko V et al (2020) Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci Transl Med 12, eaav7431 https://doi.org/10.1126/scitranslmed.aav7431
  66. Schetters STT, Rodriguez E, Kruijssen LJW et al (2020) Monocyte-derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy. J Immunother Cancer 8, e000588 https://doi.org/10.1136/jitc-2020-000588
  67. Morrison AH, Diamond MS, Hay CA, Byrne KT and Vonderheide RH (2020) Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity. Proc Natl Acad Sci U S A 117, 8022 https://doi.org/10.1073/pnas.1918971117
  68. Garris CS, Arlauckas SP, Kohler RH et al (2018) Successful anti-PD-1 cancer immunotherapy requires T cell- dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148-1161.e1147 https://doi.org/10.1016/j.immuni.2018.09.024
  69. Cauwels A, Van Lint S, Paul F et al (2018) Delivering type I interferon to dendritic cells empowers tumor eradication and immune combination treatments. Cancer Res 78, 463 https://doi.org/10.1158/0008-5472.CAN-17-1980
  70. Wang H, Hu S, Chen X et al (2017) cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci U S A 114, 1637 https://doi.org/10.1073/pnas.1621363114
  71. Alloatti A, Rookhuizen DC, Joannas L et al (2017) Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity. J Exp Med 214, 2231-2241 https://doi.org/10.1084/jem.20170229
  72. Nemunaitis J (2005) Vaccines in cancer: GVAX, a GM-CSF gene vaccine. Expert Rev Vaccines 4, 259-274 https://doi.org/10.1586/14760584.4.3.259
  73. Yan W-L, Shen K-Y, Tien C-Y, Chen Y-A and Liu S-J (2017) Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy 9, 347-360 https://doi.org/10.2217/imt-2016-0141
  74. Bommareddy PK, Patel A, Hossain S and Kaufman HL (2017) Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am J Clin Dermatol 18, 1-15 https://doi.org/10.1007/s40257-016-0238-9
  75. Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS and Kim-Schulze S (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding gm-csf in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17, 718-730 https://doi.org/10.1245/s10434-009-0809-6
  76. Robinson RA, DeVita VT, Levy HB, Baron S, Hubbard SP and Levine AS (1976) A phase I-II trial of multipledose polyriboinosinic-polyribocytidylic acid in patients with leukemia or solid tumors. J Natl Cancer Inst 57, 599-602 https://doi.org/10.1093/jnci/57.3.599
  77. Kyi C, Roudko V, Sabado R et al (2018) Therapeutic immune modulation against solid cancers with intratumoral poly-ICLC: a pilot trial. Clin Cancer Res 24, 4937-4948 https://doi.org/10.1158/1078-0432.CCR-17-1866
  78. Navabi H, Jasani B, Reece A et al (2009) A clinical grade poly I:C-analogue (Ampligen) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro. Vaccine 27, 107-115 https://doi.org/10.1016/j.vaccine.2008.10.024
  79. Aznar MA, Planelles L, Perez-Olivares M et al (2019) Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J Immunother Cancer 7, 116 https://doi.org/10.1186/s40425-019-0568-2
  80. Corrales L, Glickman Laura H, McWhirter Sarah M et al (2015) Direct activation of sting in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11, 1018-1030 https://doi.org/10.1016/j.celrep.2015.04.031
  81. Finn OJ (2017) Human tumor antigens yesterday, today, and tomorrow. Cancer Immunol Res 5, 347 https://doi.org/10.1158/2326-6066.CIR-17-0112
  82. Harari A, Graciotti M, Bassani-Sternberg M and Kandalaft LE (2020) Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov 19, 635-652 https://doi.org/10.1038/s41573-020-0074-8
  83. Gleisner MA, Pereda C, Tittarelli A et al (2020) A heatshocked melanoma cell lysate vaccine enhances tumor infiltration by prototypic effector T cells inhibiting tumor growth. J Immunother Cancer 8, e000999 https://doi.org/10.1136/jitc-2020-000999
  84. Callmann CE, Cole LE, Kusmierz CD, Huang Z, Horiuchi D and Mirkin CA (2020) Tumor cell lysate-loaded immunostimulatory spherical nucleic acids as therapeutics for triple-negative breast cancer. Proc Natl Acad Sci U S A 117, 17543 https://doi.org/10.1073/pnas.2005794117
  85. Yarchoan M, Johnson BA, Lutz ER, Laheru DA and Jaffee EM (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17, 209-222 https://doi.org/10.1038/nrc.2016.154
  86. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124-128 https://doi.org/10.1126/science.aaa1348
  87. Balachandran VP, Luksza M, Zhao JN et al (2017) Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512-516 https://doi.org/10.1038/nature24462
  88. Ott PA, Hu Z, Keskin DB et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217-221 https://doi.org/10.1038/nature22991
  89. Keskin DB, Anandappa AJ, Sun J et al (2019) Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234-239 https://doi.org/10.1038/s41586-018-0792-9
  90. Kim JH, Lee Y, Bae Y-S et al (2007) Phase I/II study of immunotherapy using autologous tumor lysate-pulsed dendritic cells in patients with metastatic renal cell carcinoma. Clin Immunol 125, 257-267 https://doi.org/10.1016/j.clim.2007.07.014
  91. Powell A, Creaney J, Broomfield S, Van Bruggen I and Robinson B (2006) Recombinant GM-CSF plus autologous tumor cells as a vaccine for patients with mesothelioma. Lung Cancer 52, 189-197 https://doi.org/10.1016/j.lungcan.2006.01.007
  92. Tsuji T, Matsuzaki J, Kelly MP et al (2011) Antibody-targeted NY-ESO-1 to mannose receptor or DEC-205 in vitro elicits dual human CD8+ and CD4+ T cell responses with broad antigen specificity. J Immunol 186, 1218 https://doi.org/10.4049/jimmunol.1000808
  93. Birkholz K, Schwenkert M, Kellner C et al (2010) Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation. Blood 116, 2277-2285 https://doi.org/10.1182/blood.v116.21.2277.2277
  94. Anguille S, Smits EL, Lion E, van Tendeloo VF and Berneman ZN (2014) Clinical use of dendritic cells for cancer therapy. Lancet Oncol 15, e257-e267 https://doi.org/10.1016/S1470-2045(13)70585-0
  95. Draube A, Klein-González N, Mattheus S et al (2011) Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS One 6, e18801 https://doi.org/10.1371/journal.pone.0018801
  96. Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363, 411-422 https://doi.org/10.1056/NEJMoa1001294
  97. Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO and Kandalaft LE (2019) Personalized dendritic cell vaccines-recent breakthroughs and encouraging clinical results. Front Immunol 10, 766 https://doi.org/10.3389/fimmu.2019.00766
  98. van Willigen WW, Bloemendal M, Gerritsen WR, Schreibelt G, de Vries IJM and Bol KF (2018) Dendritic cell cancer therapy: vaccinating the right patient at the right time. Front Immunol 9, 2265 https://doi.org/10.3389/fimmu.2018.02265
  99. Carreno BM, Magrini V, Becker-Hapak M et al (2015) A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348, 803 https://doi.org/10.1126/science.aaa3828
  100. Perez CR and De Palma M (2019) Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun 10, 5408 https://doi.org/10.1038/s41467-019-13368-y
  101. Okada N, Mori N, Koretomo R et al (2005) Augmentation of the migratory ability of DC-based vaccine into regional lymph nodes by efficient CCR7 gene transduction. Gene Ther 12, 129-139 https://doi.org/10.1038/sj.gt.3302358
  102. Yang X, Lian K, Meng T et al (2018) Immune adjuvant targeting micelles allow efficient dendritic cell migration to lymph nodes for enhanced cellular immunity. ACS Appl Mater Interfaces 10, 33532-33544 https://doi.org/10.1021/acsami.8b10081
  103. Wang J, Iwanowycz S, Yu F et al (2016) microRNA-155 deficiency impairs dendritic cell function in breast cancer. Oncoimmunology 5, e1232223 https://doi.org/10.1080/2162402X.2016.1232223
  104. Lind EF, Millar DG, Dissanayake D et al (2015) miR-155 upregulation in dendritic cells is sufficient to break tolerance in vivo by negatively regulating SHIP1. J Immunol 195, 4632 https://doi.org/10.4049/jimmunol.1302941
  105. Wilgenhof S, Corthals J, Heirman C et al (2016) Phase II study of autologous monocyte-derived mrna electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol 34, 1330-1338 https://doi.org/10.1200/JCO.2015.63.4121
  106. Yang S-C, Hillinger S, Riedl K et al (2004) Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin Cancer Res 10, 2891 https://doi.org/10.1158/1078-0432.CCR-03-0380
  107. Lee JM, Lee M-H, Garon E et al (2017) Phase I trial of intratumoral injection of CCL21 gene-modified dendritic cells in lung cancer elicits tumor- specific immune responses and CD8+ T-cell infiltration. Clin Cancer Res 23, 4556-4568 https://doi.org/10.1158/1078-0432.CCR-16-2821
  108. Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC, Melero I and Sancho D (2019) Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer 7, 100 https://doi.org/10.1186/s40425-019-0565-5
  109. Kadam P and Sharma S (2020) PD-1 immune checkpoint blockade promotes therapeutic cancer vaccine to eradicate lung cancer. Vaccines 8, 317 https://doi.org/10.3390/vaccines8020317
  110. Teng C-F, Wang T, Wu T-H et al (2020) Combination therapy with dendritic cell vaccine and programmed death ligand 1 immune checkpoint inhibitor for hepatocellular carcinoma in an orthotopic mouse model. Ther Adv Med Oncol 12, 1758835920922034