Acknowledgement
This research was funded by the Korea Institute of Marine Science & Technology Promotion (grant number 20200478).
References
- Ahn, J., Lee, S., Jeong, J., & Choi, Y. (2021). Comparative Feasibility Study of Combined Cycles for Marine Power System in a Large Container Ship Considering Energy Efficiency Design Index (EEDI). International Journal of Hydrogen Energy, 46(62), 31816-31827. https://doi.org/10.1016/j.ijhydene.2021.07.068
- Al-Breiki, M., & Bicer, Y. (2020). Investigating the Effects of Boil-off Gas on Liquefied Energy Carriers During Land Storage and Ocean Transportation. In IOP Conference Series: Earth and Environmental Science, 581(1), 012017. IOP Publishing.
- Arteconi, A., Brandoni, C., Evangelista, D., & Polonara, F. (2010). Life-cycle Greenhouse Gas Analysis of LNG as a Heavy Vehicle Fuel in Europe. Applied Energy, 87(6), 2005-2013. https://doi.org/10.1016/j.apenergy.2009.11.012
- Cadafalch, J., Carbonell, D., Consul, R., & Ruiz, R. (2015). Modelling of Storage Tanks with Immersed Heat Exchangers. Solar Energy, 112, 154-162. https://doi.org/10.1016/j.solener.2014.11.032
- Chang, Y.T., Song, Y., & Roh, Y. (2013). Assessing Greenhouse Gas Emissions from Port Vessel Operations at the Port of Incheon. Transportation Research Part D: Transport and Environment, 25, 1-4. https://doi.org/10.1016/j.trd.2013.06.008
- Chorowski, M., Duda, P., Polinski, J., & Skrzypacz, J. (2015). LNG Systems for Natural Gas Propelled Ships. In IOP Conference Series: Materials Science and Engineering, Tucson, AZ, USA, 101(1), 012089.
- Dissanayake, D., Rosynek, M.P., Kharas, K.C., & Lunsford, J.H. (1991). Partial Oxidation of Methane to Carbon Monoxide and Hydrogen over a Ni/Al2O3 Catalyst. Journal of Catalysis, 132(1), 117-127. https://doi.org/10.1016/0021-9517(91)90252-Y
- Lee, H.J., Yoo, S.H., & Huh, S.Y. (2020). Economic Benefits of Introducing LNG-fuelled Ships for Imported Flour in South Korea. Transportation Research Part D: Transport and Environment, 78, 102220. https://doi.org/10.1016/j.trd.2019.102220
- Wada, Y., Yamamura, T., Hamada, K., & Wanaka, S. (2021). Evaluation of GHG Emission Measures Based on Shipping and Shipbuilding Market Forecasting. Sustainability, 13(5), 2760. https://doi.org/10.3390/su13052760
- Winnes, H., & Fridell, E. (2009). Particle Emissions from Ships: Dependence on Fuel Type. Journal of the Air & Waste Management Association, 59(12), 1391-1398. https://doi.org/10.3155/1047-3289.59.12.1391
- Yu, Y.U., Park, S.H., Jung, D.H., & Lee, C.H. (2020). Improving Liquefied Natural Gas Bunkering in Korea through the Chinese and Japanese Experiences. Sustainability, 12(22), 9585. https://doi.org/10.3390/su12229585
- Edfors, J., & Bremberg, R. (2021). Liquid Natural Gas: A Study of the Environmental Impact of LNG in Comparison to Diesel. Retrieved from http://urn.kb.se/resolve?urnurn:nbn:se:lnu:diva103569
- El-Houjeiri, H., Monfort, J.C., Bouchard, J., & Przesmitzki, S. (2019). Life Cycle Assessment of Greenhouse Gas Emissions from Marine Fuels: A Case Study of Saudi Srude Oil Versus Natural Gas in Different Global Regions. Journal of Industrial Ecology, 23(2), 374-388. https://doi.org/10.1111/jiec.12751
- Herdzik, J. (2018). Methane Slip During Cargo Operations on LNG Carriers and LNG-fueled Vessels. New Trends in Production Engineering, 1(1), 293-299. https://doi.org/10.2478/ntpe-2018-0036
- Im, S., Mostafa, A., Shin, S.R., & Kim, D.H. (2020). Combination of H2SO4-acidification and Temperature-decrease for Eco-friendly Storage of Pig Slurry. Journal of Hazardous Materials, 399, 123063. https://doi.org/10.1016/j.jhazmat.2020.123063
- Jang, H., Jeong, B., Zhou, P., Ha, S., & Nam, D. (2021). Demystifying the Lifecycle Environmental Benefits and Harms of LNG as Marine fuel. Applied Energy, 292(15), 116869. https://doi.org/10.1016/j.apenergy.2021.116869
- Jeong, B., Lee, B.S., Zhou, P., & Ha, S.M. (2017). Evaluation of Safety Exclusion Zone for LNG Bunkering Station on LNG-fuelled Ships. Journal of Marine Engineering & Technology, 16(3), 121-144. https://doi.org/10.1080/20464177.2017.1295786
- Jung, D.H., Oh, S.H., Jung, J.H., Hwang, S.C., Sung, H.G., Lee, J.I., & Kim, E.S. (2018). Development of the First LNG Bunkering Barge System in Korea. In Proceedings of the Korean Institute of Navigation and Port Research Conference, 162-163. Korean Institute of Navigation and Port Research.
- Kwak, D.H., Heo, J.H., Park, S.H., Seo, S.J., & Kim, J.K. (2018). Energy-efficient Design and Optimization of Boil-off Gas (BOG) re-liquefaction Process for Liquefied Natural Gas (LNG)-fuelled Ship. Energy, 148, 915-929. https://doi.org/10.1016/j.energy.2018.01.154
- Lee, H., Choi, J., Jung, I., Lee, S., Yoon, S., Ryu, B., & Kang, H. (2020). Effect of Parameters on Vapor Generation in Ship-to-Ship Liquefied Natural Gas Bunkering. Applied Sciences, 10(19), 6861. https://doi.org/10.3390/app10196861
- Lee, S. (2017). Multi-parameter Optimization of Cold Energy Recovery in Cascade Rankine Cycle for LNG Regasification Using Genetic Algorithm. Energy, 118, 776-782. https://doi.org/10.1016/j.energy.2016.10.118
- Lowell, D., Wang, H., & Lutsey, N. (2013). Assessment of the Fuel Cycle Impact of Liquefied Natural Gas as Used in International Shipping. The International Council on Clean Transportation.
- Naji, S.Z., Abd, A.A., & Hashim, A.S. (2019). Tracking Boil off Gas Generation into Liquefied Natural Gas Supply Chain Using HYSYS Simulator. In IOP Conference Series: Materials Science and Engineering, 579(1), 012019. IOP Publishing.
- Noh, Y., Chang, K., Seo, Y., & Chang, D. (2014). Risk-based Determination of Design Pressure of LNG Fuel Storage Tanks Based on Dynamic Process Simulation Combined with Monte Carlo Method. Reliability Engineering & System Safety, 129, 76-82. https://doi.org/10.1016/j.ress.2014.04.018
- Penteado, R., Cavalli, M., Magnano, E., & Chiampo, F. (2012). Application of the IPCC Model to a Brazilian Landfill: First Results. Energy Policy, 42, 551-556. https://doi.org/10.1016/j.enpol.2011.12.023
- Ryste, J.M. (2012). Screening LCA of GHG Emissions Related to LNG as Ship Fuel (Master's thesis). Institutt for Marin Teknikk, Norwegian University of Science and Technology.
- Ryu, J., Lee, C., Seo, Y., Kim, J., Seo, S., & Chang, D. (2016). A Novel Boil-off Gas Re-liquefaction Using a Spray Recondenser for Liquefied Natural-gas Bunkering Operations. Energies, 9(12), 1004. https://doi.org/10.3390/en9121004
- Shao, Y., Lee, Y.H., Kim, Y.T., & Kang, H.K. (2018). Parametric Investigation of BOG Generation for Ship-to-ship LNG Bunkering. Journal of the Korean Society of Marine Environment & Safety, 24(3), 352-359. https://doi.org/10.7837/kosomes.2018.24.3.352
- Shao, Y., Lee, Y., & Kang, H. (2019). Dynamic Optimization of Boil-off Gas Generation for Different Time Limits in Liquid Natural Gas Bunkering. Energies, 12(6), 1130. https://doi.org/10.3390/en12061130
- Sharafian, A., Blomerus, P., & Merida, W. (2019). Liquefied Natural Gas Tanker Truck-to-tank Transfer for On-road Transportation. Applied Thermal Engineering, 162, 114313. https://doi.org/10.1016/j.applthermaleng.2019.114313
- Styhre, L., Winnes, H., Black, J., Lee, J., & Le-Griffin, H. (2017). Greenhouse Gas Emissions from Ships in Ports-Case Studies in Four Continents. Transportation Research Part D: Transport and Environment, 54, 212-224. https://doi.org/10.1016/j.trd.2017.04.033
- Unseki, T. (2013). Environmentally Superior LNG-Fueled Vessels. Mitsubishi Heavy Industries Technical Review, 50(2), 37-43.
- Vairo, T., Gualeni, P., Fabiano, B., & Benvenuto, A.C. (2020). Resilience Assessment of Bunkering Operations for A LNG Fuelled Ship. Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference. https://doi.org/10.3850/981-973-0000-00-0 output
- Wood, D.A., & Kulitsa, M. (2018). A Review: Optimizing Performance of Floating Storage and Regasification Units (FSRU) by Applying Advanced LNG Tank Pressure Management Strategies. International Journal of Energy Research, 42(4), 1391-1418. https://doi.org/10.1002/er.3883
- Zincir, B., & Dere, C. (2015). Adaptation of LNG Fuel System Workout to a Simulator for Training Purpose of Engine Officers. In International Conference on Engine Room Simulators (ICERS12) Proceedings Book, 115-122.