DOI QR코드

DOI QR Code

Dust and sandstorm: ecosystem perspectives on dryland hazards in Northeast Asia: a review

  • Kang, Sinkyu (Department of Environmental Science, Kangwon National University) ;
  • Lee, Sang Hun (Center for Global Cooperation, Korea Environment Institute) ;
  • Cho, Nanghyun (Department of Environmental Science, Kangwon National University) ;
  • Aggossou, Casmir (Department of Environmental Science, Kangwon National University) ;
  • Chun, Jungwha (Forest ICT Research Center, National Institute of Forest Science)
  • 투고 : 2021.09.23
  • 심사 : 2021.11.04
  • 발행 : 2021.12.31

초록

Background: A review of the literature was carried out to study dust and sandstorm (DSS) in terms of its ecosystem processes and relationship to other dryland disasters in Northeast Asia. Drylands are ecosystems that include grasslands, semi-deserts, and deserts, and these types of ecosystems are vulnerable due to their low primary productivity that depends on a small amount of precipitation. Results: Drought, dust, desertification, and winter livestock disasters (called dzud) are unique natural disasters that affect the region. These disasters are related in that they share major causes, such as dryness and low vegetation cover that combine with other conditions, wind, cold waves, livestock, and land-surface energy, to dramatically impact the ecosystem. Conclusions: The literature review in this study illustrates the macroscopic context of the spatial and temporal patterns of DSS according to geography, climate, and vegetation growth in the drylands of Northeast Asia. The effects of ocean climates and human activities were discussed to infer a possible teleconnection effect of DSS and its relations to desertification and dzud.

키워드

과제정보

This work was funded by National Institute of Forest Science, Grant number (FM0103-2021-02) and Korea Environment Institute.

참고문헌

  1. Biondini ME, Patton BD, Nyren PE. Grazing intensity and ecosystem processes in a northern mixed-grass prairie. USA Ecol App. 1998;8(2):469-79. https://doi.org/10.1890/1051-0761(1998)008[0469:GIAEPI]2.0.CO;2.
  2. Blade I, Liebmann B, Fortuny D, van Oldenborgh GJ. Observed and simulated impacts of the summer NAO in Europe: implications for projected drying in the Mediterranean region. Climatic Dynamics. 2012;39(3-4):709-27. https://doi.org/10.1007/s00382-011-1195-x.
  3. Bothe O, Fraedrich K, Zhu X. Precipitation climate of Central Asia and the largescale atmospheric circulation. Theor App Climatol. 2012;108(3-4):345-54. https://doi.org/10.1007/s00704-011-0537-2.
  4. Chen F, Chen S, Zhang X, Chen J, Wang X, Gowan EJ, Qiang M, Dong G, Wang Z, Li Y, Xu Q, Xu Y, Smol JP, Liu J. Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP. Nat Commun. 2020;11:992. https://doi.org/10.1038/s41467-020-14765-4.
  5. Chen J, Huang W, Feng S, Zhang Q, Kuang X, Chen J, et al. The modulation of westerlies-monsoon interaction on climate over the monsoon boundary zone in East Asia. Int J Climatol. 2021;41(Suppl. 1):E3049-64. https://doi.org/10.1002/joc.6903.
  6. Cortner HJ. Desertification and the political agenda. Population Environ. 1989;11(1):31-41. https://doi.org/10.1007/BF01255656.
  7. Cunliffe B. By steppe, desert, and ocean: the birth of Eurasia. UK: Oxford University Press; 2015.
  8. Curio J, Maussion F, Scherere DA. 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst Dynam. 2015;6(1):109-24. https://doi.org/10.5194/esd-6-109-2015.
  9. Dietz AJ, Amgalan E, Erdenechuluun T, Hess S. Carrying capacity dynamics, livestock commercialization and land degradation in Mongolia's free market era. The Netherlands: PREM, Institute for Environmental Studies, Vrije University, Amsterdam; 2005.
  10. Dirmeyer PA, Brubaker KL. Characterization of the global hydrological cycle from a back-trajectory analysis of atmospheric water vapor. J Hydrometeorol. 2007;8(1):20-37. https://doi.org/10.1175/JHM557.1.
  11. Dong B, Sutton RT, Woollings T, Hodges K. Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ Res Lett. 2013;8(3):034037. https://doi.org/10.1088/1748-9326/8/3/034037.
  12. Eldevochir, E.: Livestock statistics in Mongolia. FAO Asia and Pacific Commission on Agricultural Statistics, 16, 6.3.5 (2016)
  13. Fernandez-Gimenez ME, Batkhishig B, Batbuyan B, Ulambayar T. Lessons from the Dzud: Community-Based Rangeland Management Increases the Adaptive Capacity of Mongolian Herders to Winter Disasters. World Dev. 2015;68:48-65. https://doi.org/10.1016/j.worlddev.2014.11.015.
  14. Gumilev LN. Searching for an imaginary kingdom. Cambridge: Cambridge University Press; 2009.
  15. Guo Z, Ai N, Polenske KR. Evaluating environmental and economic benefits of yellow dust storm-related policies in north China. Int J Sustain Dev World Ecol. 2008;15(5):457-70. https://doi.org/10.3843/SusDev.15.5:7.
  16. Hoffmann C, Funk R, Li Y, Michael S. Effect of grazing on wind driven carbon and nitrogen ratios in the grasslands of Inner Mongolia. Catena. 2008;75(2):182-90. https://doi.org/10.1016/j.catena.2008.06.003.
  17. Igarashi Y, Inomata Y, Aoyama M, Hirose K, Takahashi H, Shinoda Y, et al. Possible change in Asian dust source suggested by atmospheric anthropogenic radionuclides during the 2000s. Atmos Environ. 2009;43(18):2971-80. https://doi.org/10.1016/j.atmosenv.2009.02.018.
  18. Johnson DA, Sheehy DP, Miller D, Damiran D. Mongolian rangelands in transition. Secheresse. 2006;17:133-41.
  19. Kang, S.: Climatic and socio-ecological considerations on Yellow Dust and desertification in dryland regions of the Northeast Asia. Korean Journal of Nature Conservation, 6, 1-8 (2012) (written in Korean with English abstract and figure legends)
  20. Kang W, Kang S, Liu S, Han Y. Assessing the degree of land degradation and rehabilitation in the Northeast Asia dryland region using net primary productivity and water use efficiency. Land Degradation & Development. 2020;31(8). https://doi.org/10.1002/ldr.3506.
  21. Kim J. Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965- 2004). Atmos Environ. 2008;42(19):4778-89. https://doi.org/10.1016/j.atmosenv.2008.01.040.
  22. Kim S, Chun Y, Kim S-B. The features of Asian Dust events originated in Manchuria. Atmosphere. 2010;20:273-86 written in Korean with English abstracts and figure legends.
  23. Kim S, Lee S. The analysis of the weather characteristics by source regions of the Asian Dust observed in South Korea. J Korean Geograp Soc. 2013;48:167-83 written in Korean with English abstracts and figure legends.
  24. Kimura R, Bai L, Wang J. Relationships among dust outbreaks, vegetation cover, and surface soil water content on the Loess Plateau of China, 1999-2000. Catena. 2009;77(3):292-6. https://doi.org/10.1016/j.catena.2009.02.016.
  25. Kimura R, Shinoda M. Spatial distribution of threshold wind speeds for dust outbreaks in northeast Asia. Geomorphology. 2010;114(3):319-25. https://doi.org/10.1016/j.geomorph.2009.07.014.
  26. Koster RD, Dirmeyer PA, Guo A, et al. Regions of strong coupling between soil moisture and precipitation. Science. 2004;305(5687):1138-40. https://doi.org/10.1126/science.1100217.
  27. Lee EH, Sohn BJ. Recent increasing trend in dust frequency over Mongolia and Inner Mongolia regions and its association with climate and surface condition change. Atmos Environ. 2011;45(27):4611-6. https://doi.org/10.1016/j.atmosenv.2011.05.065.
  28. Li B, Li Y, Chen Y, Zhang B, Shi X. Recent fall Eurasian cooling linked to North Pacific sea surface temperatures and a strengthening Siberian high. Nat Commun. 2020;11(1):5202. https://doi.org/10.1038/s41467-020-19014-2.
  29. Li J, Ruan C. The North Atlantic-Eurasian teleconnection in summer and its effects on Eurasian climates. Environ Res Lett. 2018;13(12):129501. https://doi.org/10.1088/1748-9326/aaeb56.
  30. Linderholm HW, Ou T, Jeong J, Folland CK, Gong D, Liu H, et al. Interannual teleconnections between the summer North Atlantic Oscillation and the East Asian summer monsoon. J Geophys Res. 2011;116. https://doi.org/10.1029/2010JD015235.
  31. Matsumura S, Kosaka Y. Arctic-Eurasian climate linkage induced by tropical ocean variability. Nat Commun. 2019;10(1):3441. https://doi.org/10.1038/s41467-019-11359-7.
  32. Middleton NJ, Sternberg T. Climate hazards in drylands: A review. Earth-Science Rev. 2013;126:48-57. https://doi.org/10.1016/j.earscirev.2013.07.008
  33. Natsagdorj L, Jugder D, Chung YS. Analysis of dust storms observed in Mongolia during 1937-1999. Atmos Environ. 2003;37(9-10):1401-11. https://doi.org/10.1016/S1352-2310(02)01023-3.
  34. Normile D. Getting at the roots of killer dust storms. Science. 2007;317(5836):314-6. https://doi.org/10.1126/science.317.5836.314.
  35. Numaguti A. Origin and recycling processes of precipitation water over the Eurasian continent: Experiments using an atmospheric general circulation model. J Geophys Res. 1999;104(D2):1957-72. https://doi.org/10.1029/1998JD200026.
  36. Qi Y, Chang Q, Jia K, Liu M, Liu J, Chen T. Temporal-spatial variability of desertification in an agro-pastoral transitional zone of northern Shaanxi province, China. Catena. 2012;88(1):37-45. https://doi.org/10.1016/j.catena.2011.08.003.
  37. Robinson S, Milner-Gulland EJ. Political change and factors limiting numbers of wild and domestic ungulate in Kazakhstan. Hum Ecol. 2003;31(1):87-110. https://doi.org/10.1023/A:1022834224257.
  38. Sato T, Tsujimura M, Yamanaka T, Iwasaki H, Sugimoto A, Sugita M, Kimura F, Davaa G, Oyunbaatar D. Water sources in semiarid northeast Asia as revealed by field observations and isotope transport model. J Geophys Res. 2007:112. https://doi.org/10.1029/2006JD008321.
  39. Sterk G, Stoorvogel JJ. Desertification-scientific versus political realities. Land. 2020;9(5):156. https://doi.org/10.3390/land9050156.
  40. Sternberg T. Unravelling Mongolia's extreme winter disaster of 2010. Nomadic Peoples. 2010;14(1):72-86. https://doi.org/10.3167/np.2010.140105.
  41. Sun C, Li J, Zhao S. Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci Rep. 2015;5(1). https://doi.org/10.1038/srep16853.
  42. Sun J, Ahang M, Liu T. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960-1999: Relations to source area and climate. J Geophys Res. 2001;106(D10):10325-34. https://doi.org/10.1029/2000JD900665.
  43. Wang T, Xue X, Zhou L, Guo J. Combating aeolian desertification in northern China. Land Degrad Dev. 2015;26(2):118-32. https://doi.org/10.1002/ldr.2190.
  44. Wang X, Chen F, Dong Z. The relative role of climatic and human factors in desertification in semiarid China. Glob Environ Chang. 2006;16(1):48-57. https://doi.org/10.1016/j.gloenvcha.2005.06.006.
  45. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, et al. The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science. 2005;308(5723):854-7. https://doi.org/10.1126/science.1106296.
  46. Wang Z, Huang J, Ji M, Higuchi K. Variability of East Asia dust events and their long-term trend. Atmos Environ. 2008;42(13):3156-65. https://doi.org/10.1016/j.atmosenv.2007.07.046.
  47. Werger MJA, van Staalduinen MA. Eurasian steppes - ecological problems and livelihoods in a changing world. London: Springer; 2012.
  48. Xu J. Sand-dust storms in and around the Ordos Plateau of China as influenced by land use change and desertification. Catena. 2006;65(3):297-84. https://doi.org/10.1016/j.catena.2005.12.006.
  49. Zhang J, Niu J, Buyantuev A, Wu J. A multilevel analysis of effects of land use policy on land-cover change and local land use decisions. J Arid Environ. 2014;108:19-28. https://doi.org/10.1016/j.jaridenv.2014.04.006.
  50. Zhang XY, Gong SL, Zhao TL, Arimoto R, Wang YQ, Zhou ZJ. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys Res Lett. 2003;30. https://doi.org/10.1029/2003GL018206.
  51. Zhao HL, Zhao ZY, Zhou RL, Zhang TH, Drake S. Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. J Arid Environ. 2005;62(2):309-19. https://doi.org/10.1016/j.jaridenv.2004.11.009.