DOI QR코드

DOI QR Code

Effect of Culture Medium Vitamin Concentration of Culture Medium on Ethanol Production in Syngas Fermentation

합성가스 발효에서 배지 내 Vitamin 농도의 에탄올 생산에 대한 영향

  • Im, Hongrae (Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • An, Taegwang (Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University) ;
  • Park, Soeun (Research Center of Chemical Technology, Hankyong National University) ;
  • Kim, Young-Kee (Faculty of Food Biotechnology and Chemical Engineering, Hankyong National University)
  • Received : 2021.05.11
  • Accepted : 2021.08.04
  • Published : 2021.09.25

Abstract

In this study, we assessed the effect of vitamin components (such as biotin, thiamine-HCl, and folic acid) on microorganism microbial growth and ethanol production was examined to enhance increase the ethanol concentration in the Clostridium autoethanogenum culture process using syngas as a sole carbon source. Biotin and folic acid concentrations of 0.2, 2, 20, and 100 ㎍/L were used in the culture experiments at 0.2, 2, 20, and 100 ㎍/L concentrations. The maximum ethanol concentrations of 2.81 g/L and 3.12 g/L were obtained by adding at 0.2 ㎍/L biotin and folic acid, respectively. Moreover, Thiaminethiamine--HCl at concentrations of 0.5, 5, 50, and 250 ㎍/L were was examined evaluated to in the culture experiments. The maximum ethanol concentration of 2.84 g/L was observed at 0.5 ㎍/L of thiamine--HCl. As a resultThus, the optimized concentrations of biotin, thiamine--HCl, and folic acid were determined at 0.2, 0.5, and 0.2 ㎍/L, respectively, for enhancing increasing the ethanol production. In conclusion, the maximum ethanol production was obtained by adding the minimal concentration of vitamins in C. autoethanogenum culture.

Keywords

Acknowledgement

이 연구는 교육부의 재원으로 한국연구재단-이공학개인기초연구지원사업(NRF-2018R1D1A1B07043323)의 지원을 받아 수행한 연구입니다.

References

  1. Kul, B.S., and Ciniviz M., 2021, "An evaluation based on energy and exergy analyses in SI engine fueled with waste bread bioethanol-gasoline blends", Fuel, 286(2), 119375. https://doi.org/10.1016/j.fuel.2020.119375
  2. Seo, H., Kim, H., and Jeon, E., 2019, "Environmental improvement effect and social benefit: Focusing on bio-heavy oil power generation", New. Renew. Energy, 15(3), 85-92. https://doi.org/10.7849/ksnre.2019.9.15.3.085
  3. Esmaeili, S.A.H., Sobhani, A., Szmerekovsky, J., Dybing, A., and Pourhashem, G., 2020, "First generation vs. second generation: A market incentives analysis for bioethanol supply chains with carbon policies", Appl. Energy, 277(1), 115606. https://doi.org/10.1016/j.apenergy.2020.115606
  4. Nunes, L.J.R., Causer, T.P., and Ciolkosz, D., 2020, "Biomass for energy: A review on supply chain management models", Renew. Sust. Energ. Rev., 120, 109658, DOI:10.1016/j.rser.2019.109658.
  5. Joshi, G., Pandey, J.K., Rana S., and Rawat, D.S., 2017, "Challenges and opportunities for the application of biofuel", Renew. Sust. Energ. Rev., 79, 850-866, DOI: 10.1016/j.rser.2017.05.185.
  6. Sharma, B., Larroche, C., and Dussap, D.-G., 2020 "Comprehensive assessment of 2G bioethanol production", Bioresour. Technol., 313, 123630, DOI:10.1016/j.biotech.2020.123630.
  7. Zaafouri, K., Ziadi, M., Farah, R.B., Farid, M., Hamdi, and M., Regaya, I., 2016, "Potential of Tunisian Alfa (Stipa tenacissima) fibers for energy recovery to 2G bioethanol: Study of pretreatment, enzymatic saccharification and fermentation", Biomass Bioenergy, 94, 66-77, DOI:10.1016/j.biombioe.2016.08.008.
  8. Im, H.R., Kwon, R.K., Park, S.E., and Kim, Y.-K., 2020, "Effect of heavy metal on syngas fermentation using Clostridium autoethanogenum", Appl. Chem. Eng., 31(4), 423-428. https://doi.org/10.14478/ACE.2020.1049
  9. Liu, C., Luo, G., Wang, W., He, Y., Zhang, R., and Liu, G., 2018, "The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation", Fuel, 224, 537-544, DOI: 10.1016/j.fuel.2018.03.125.
  10. Pardo-Planas, O., Atiyeh, H.K., Phillips, J.R., Aichele, C.P., and Moharmmad, S., 2017, "Process simulation of ethanol production from biomass gasification and syngas fermentation", Bioresour. Technol., 245, 925-932, DOI:10.1016/j.biortech.2017.08.193.
  11. Piatek, P., Olsson, L., and Nygard, Y., 2020, "Adaptation during propagation improves Clostridium autoethanogenum tolerance towards benzene, toluene and xylenes during gas fermentation", Bioresour. Technol. Rep., 12, 100564, DOI:10.1016/j.biteb.2020.100564.
  12. Slivka, R.M., Chinn, M.S., Grunden, A.M., and Bruno-Barcena J.M., 2020, "An iterative approach to improve xylose consumption by Clostridium autoethanogenum: From substrate concentration to pH adjustment", Biomass Bioenergy, 140, 105663, DOI:10.1016/j.biombioe.2020.105663.
  13. Im, H.R., An, T.G., Park, S.E., and Kim, Y.-K., 2019, "Effect of vitamin and Sulfur sources on syngas fermentation using Clostridium autoethanogenum", Appl. Chem. Eng., 30(6), 681-686.
  14. Anggraini, I.D., Kresnowati, P., Purwadi, R., and Setiadi, T., 2018, "Bioethanol production via syngas fermentation", MATEC Web Conf., 156, 03025, DOI:10.1051/matecconf/201815603025.
  15. Jack, J., Lo, J., Maness, P.-C., and Ren, Z.J., 2019, "Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas", Biomass Bioenergy, 124, 95-101, OI:10.1016/j.biombioe.2019.03.011.
  16. Sim, J.H., Kamaruddin, A.H., and Long, W.S., 2008, "Biocatalytic conversion of CO to acetic acid by Clostridium aceticum - Medium optimization using response surface methodology (RSM)", Biochem. Eng. J., 40(2), 337-347. https://doi.org/10.1016/j.bej.2008.01.006
  17. Urgerman, A.J., and Heindel, T.J., 2007, "Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations", Biotechnol. Progr., 23, 613-620, DOI:10.1021/bp060311z.
  18. Saxena, J., and Tanner, R.S., 2011, "Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen Clostridium ragsdalei" J. Ind. Microbiol. Biot., 38(4), 513-521. https://doi.org/10.1007/s10295-010-0794-6
  19. Devi, M.P., Mohan, S.V., Mohanakrishna, G., and Sarma, P.N., 2010, "Regulatory influence of CO2 supplementation on fermentative hydrogen production process", Ind. J. Hydrogen Energy, 35(19), 10701-10709. https://doi.org/10.1016/j.ijhydene.2010.03.024
  20. Nalakath, H., Veiga, M.C., and Kennes, C., 2011, "Biological conversion of carbon monoxide: Rich syngas or waste gases to bioethanol", Biofuel. Bioprod. Biorefin., 5(1), 93-114. https://doi.org/10.1002/bbb.256
  21. Adams, S. S., Scott, S., and Ko, C.-W., 2015, "Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates", US Patent No. 9034618, May 19, 2015.
  22. Phillips, J.R., Atiyeh, H.K., Tanner, R.S., Torres, J.R., Saxena, J., Wilkins, M.R., and Huhnke, R.L., 2015, "Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques", Bioresour. Techcnol. 190, 114-121, DOI: 10.1016/j.biortech.2015.04.043.
  23. Sun, X., Atiyeh, H.K., Tanner, R.S., and Huhnke, R.L., 2019, "Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar", Appl. Energy. 236, 1269-1279, DOI:10.1016/j.apenergy.2018.12.010.
  24. Kundiyana, D.K., Huhnke, R.L., and Wilkins, M.R., 2011, "Effect of nutrient limitation and two-stage continuous fermentor design on productivities during "Clostridium ragsdalei", syngas fermentation", Bioresour. Technol. 102(10), 6058-6064. https://doi.org/10.1016/j.biortech.2011.03.020
  25. Ruangsomboon, S., Sornchai, P., and Prachom, N., 2018, "Enhanced hydrocarbon production and improved biodiesel qualities of Botryococcus braunii KMITL 5 by vitamins thiamine, biotin and cobalamin supplementation", Algal Res. 29, 159-169, DOI: 10.1016/j.algal.2017.11.028.
  26. Smart, K.F., and Boi, S.L., 2015, "Fermentation process for the production and control of pyruvate-derived products", US patent No. 9701987, July 11, 2017.
  27. Lee, H., Atkin, A. L., Barbosa, M. F. S., Dorscheid, D. R., and Schneider, H., 1988, "Effect of biotin limitation on the conversion of xylose to ethanol and xylitol by Pachysolen tannophilus and Candida guilliermondii", Enzyme Microb. 10(2), 81-84, DOI: 10.1016/0141-0229(88)90002-6.
  28. Varaprasad, D., Narasimham, D., Paramesh, K., Sudha, N.R., Himabindu, Y., Kumari, M.K., Parveen, S.N., and Chandrasekhar, T., 2019, "Improvement of ethanol production using green alga Cholorococcum minutum", Environ. Technol. 42(9), 1383-1391, DOI:10.1080/09593330.2019.1669719.
  29. Evans, R.C., and Garraway, M.O., 1976, "Effect of thiamine on ethanol and pyruvate production in Helminthosporium maydis", Plant Physiol. 57(5), 812. https://doi.org/10.1104/pp.57.5.812
  30. Maynard, C., Cummins, L., Green, J., and Weinkove, D., 2018, "A bacterial route for folic acid supplementation" BMC Biol., 16(1), 67, DOI:10.1186/s12915-018-0534-3.
  31. Nlimbalkar, R.R., Khedkar, M.A., Chavan, P.V., and Bankar, S.B., 2019, "Enhanced biobutanol production in folic acid-induced medium by using Clostridium acetobutylicum NRRL B-527", ACS Omega, 4(7), 12978-12982. https://doi.org/10.1021/acsomega.9b00583