DOI QR코드

DOI QR Code

Development of Methane Decomposition Reactor for Hydrogen Production Using Solar Thermal Energy

수소생산을 위한 태양열 이용 메탄 분해 반응기 개발

  • Kim, Haneol (Department of Mechanical Engineering, Inha University) ;
  • Kim, Jongkyu (Renewable Heat Integration Laboratory, Korea Institute of Energy Research)
  • Received : 2021.03.08
  • Accepted : 2021.06.16
  • Published : 2021.06.25

Abstract

This paper explains the development process of methane decomposition to hydrogen and carbon black using solar thermal energy. It also demonstrates the advantages and disadvantages of five different reactors for each development stage, including the reactor's experimental results. Starting with the initial direct heating type reactor, the indirect heating type reactor was developed through five modifications. The 40-kWth solar furnace installed at the Korea Institute of Energy Research was used for the experiment. In the experiment using the developed indirect heating reactor, an 89.0% methane to hydrogen conversion rate was achieved at a methane flow rate of 40 L/min, obtained at about twice the flow rate compared to previous advanced studies.

Keywords

Acknowledgement

본 연구는 환경부 '글로벌탑 환경기술개발사업'(과제번호: 2017002410010)과 한국에너지기술연구원의 주요사업(C1-2409)을 재원으로 수행되었습니다.

References

  1. Abbas, H.F., and Daud, W.W., 2010, "Hydrogen production by methane decomposition: a review", Int. J. Hydrog. Energy, 35(3), 1160-1190. https://doi.org/10.1016/j.ijhydene.2009.11.036
  2. Kim, J.K., Lee, D.M., Pack, C.K., Yim, E.S., Jung, C.S., Kim, K.D., and Oh, Y.S., 2011, "Study on potential feasibility of biomethane as a transport fuel in Korea", New. Renew. Energy., 7(3), 17-28. https://doi.org/10.7849/ksnre.2011.7.3.017
  3. Ngoh, S.K., and Njomo, D., 2012, "An overview of hydrogen gas production from solar energy", Renew. Sustain. Energy Rev., 16(9), 6782-6792. https://doi.org/10.1016/j.rser.2012.07.027
  4. Villafan-Vidales, H.I., Arancibia-Bulnes, C.A., Riveros-Rosas, D., Romero-Paredes, H., and Estrada, C.A., 2017, "An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities", Renew. Sustain. Energy Rev.,75, 894-908. https://doi.org/10.1016/j.rser.2016.11.070
  5. Qian, J.X., Chen, T.W., Enakonda, L.R., Liu, D.B., Mignani, G., Basset, J.M., and Zhou, L., 2020, "Methane decomposition to produce COx-free hydrogen and nanocarbon over metal catalysts: A review", Int. J. Hydrog. Energy, 45(15), 7981-8001. https://doi.org/10.1016/j.ijhydene.2020.01.052
  6. Abanades, S., and Flamant, G., 2006, "Solar hydrogen production from the thermal splitting of methane in a high temperature solar chemical reactor", Sol. Energy., 80(10), 1321-1332. https://doi.org/10.1016/j.solener.2005.11.004
  7. Abanades, S., and Flamant, G., 2007, "Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking", Int. J. Hydrog. Energy, 32(10-11), 1508-1515. https://doi.org/10.1016/j.ijhydene.2006.10.038
  8. Abanades, S., Kimura, H., and Otsuka, H., 2015, "A drop-tube particle-entrained flow solar reactor applied to thermal methane splitting for hydrogen production", Fuel, 153, 56-66. https://doi.org/10.1016/j.fuel.2015.02.103
  9. Maag, G., Zanganeh, G., and Steinfeld, A., 2009, "Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon", Int. J. Hydrog. Energy, 34(18), 7676-7685. https://doi.org/10.1016/j.ijhydene.2009.07.037
  10. Hirsch, D., and Steinfeld, A., 2004, "Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor", Int. J. Hydrog. Energy, 29(1), 47-55. https://doi.org/10.1016/S0360-3199(03)00048-X
  11. Ozalp, N., and JayaKrishna, D., 2010, "CFD analysis on the influence of helical carving in a vortex flow solar reactor", Int. J. Hydrog. Energy, 35(12), 6248-6260. https://doi.org/10.1016/j.ijhydene.2010.03.100
  12. Yeheskel, J., and Epstein, M., 2011, "Thermolysis of methane in a solar reactor for mass-production of hydrogen and carbon nano-materials", Carbon, 49(14), 4695-4703. https://doi.org/10.1016/j.carbon.2011.06.071
  13. Rodat, S., Abanades, S., Coulie, J., and Flamant, G., 2009, "Kinetic modelling of methane decomposition in a tubular solar reactor", Chem. Eng. J., 146(1), 120-127. https://doi.org/10.1016/j.cej.2008.09.008
  14. Rodat, S., Abanades, S., Sans, J. L., and Flamant, G., 2009, "Hydrogen production from solar thermal dissociation of natural gas: development of a 10 kW solar chemical reactor prototype", Sol. Energy, 83(9), 1599-1610. https://doi.org/10.1016/j.solener.2009.05.010
  15. Rodat, S., Abanades, S., Sans, J.L., and Flamant, G., 2010, "A pilot-scale solar reactor for the production of hydrogen and carbon black from methane splitting", Int. J. Hydrog. Energy, 35(15), 7748-7758. https://doi.org/10.1016/j.ijhydene.2010.05.057
  16. Valdes-Parada, F.J., Romero-Paredes, H., and Espinosa-Paredes, G., 2011, "Numerical simulation of a tubular solar reactor for methane cracking", Int. J. Hydrog. Energy, 36(5), 3354-3363. https://doi.org/10.1016/j.ijhydene.2010.12.022
  17. Lee, H., Chai, K., Kim, J., Lee, S., Yoon, H., Yu, C., and Kang, Y., 2014, "Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux", Energy., 66, 63-69. https://doi.org/10.1016/j.energy.2013.04.081
  18. Abanades, A., Ruiz, E., Ferruelo, E. M., Hernandez, F., Cabanillas, A., Martinez-Val, J.M., Gutierrez, D. et al., 2011, "Experimental analysis of direct thermal methane cracking", Int. J. Hydrog. Energy, 36(20), 12877-12886. https://doi.org/10.1016/j.ijhydene.2011.07.081