DOI QR코드

DOI QR Code

MEASURE OF MAXIMAL ENTROPY FOR STAR MULTIMODAL MAPS

  • Attarzadeh, Fatemeh (Department of Mathematics Faculty of Mathematical Sciences Tarbiat Modares University) ;
  • Tajbakhsh, Khosro (Department of Mathematics Faculty of Mathematical Sciences Tarbiat Modares University)
  • Received : 2019.12.15
  • Accepted : 2020.06.29
  • Published : 2021.02.15

Abstract

Let f : [0, 1] → [0, 1] be a multimodal map with positive topological entropy. The dynamics of the renormalization operator for multimodal maps have been investigated by Daniel Smania. It is proved that the measure of maximal entropy for a specific category of Cr interval maps is unique.

Keywords

Acknowledgement

We greatly appreciate the anonymous referees for their comments and suggestions.

References

  1. D. Burguet, Jump of Entropy for Cr Interval maps, Fundam. Math., 231 (2015), no. 3, 299-317. https://doi.org/10.4064/fm231-3-5
  2. J. Buzzi, Intrinsic Ergodicity of Affine Maps in [0, 1]d, Monatsh. Math., 124 (1997), no. 2, 97-118. https://doi.org/10.1007/BF01300614
  3. F. Hofbauer, On Intrinsic Ergodicity of Piecewise Monotonic Transformations With Positive Entropy, Isr. J. Math., 34,(1979), no. 3.
  4. M. Misiurewicz, Jumps of entropy in one dimension, Fundam. Math., 132, (1989), no. 3, 215-226. https://doi.org/10.4064/fm-132-3-215-226
  5. W. Parry, Intrinsic Markov Chains, Trans. Amer. Math. Soc. 112 (1964), 55-66. https://doi.org/10.1090/S0002-9947-1964-0161372-1
  6. K. Petersen, A. Quas, and S. Shin, Mesures of Maximal relative Entropy, Ergod. Theory Dyn. Syst., 23, (2003), no. 1, 207-223. https://doi.org/10.1017/S0143385702001153
  7. P. Raith, Continuity of the Measure of Maximal Entropy for Unimodal Maps on the Interval, Qual. Theory Dyn. Syst. 4, (2003), no. 1, 67-76. https://doi.org/10.1007/BF02972823
  8. C. E. Shannon, A Mathematical Theory of Communication, Bell System Tech. J., 27, (1948), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  9. D. Smania, Phase space universality for multimodal maps, Bull. Braz. Math. Soc., 36, (2005), no. 2, 225-274. https://doi.org/10.1007/s00574-005-0038-y
  10. D. Smania, Renormalization Theory for Multimodal Maps, arXiv:math/0102129 [math.DS].