Acknowledgement
We greatly appreciate the anonymous referees for their comments and suggestions.
References
- D. Burguet, Jump of Entropy for Cr Interval maps, Fundam. Math., 231 (2015), no. 3, 299-317. https://doi.org/10.4064/fm231-3-5
- J. Buzzi, Intrinsic Ergodicity of Affine Maps in [0, 1]d, Monatsh. Math., 124 (1997), no. 2, 97-118. https://doi.org/10.1007/BF01300614
- F. Hofbauer, On Intrinsic Ergodicity of Piecewise Monotonic Transformations With Positive Entropy, Isr. J. Math., 34,(1979), no. 3.
- M. Misiurewicz, Jumps of entropy in one dimension, Fundam. Math., 132, (1989), no. 3, 215-226. https://doi.org/10.4064/fm-132-3-215-226
- W. Parry, Intrinsic Markov Chains, Trans. Amer. Math. Soc. 112 (1964), 55-66. https://doi.org/10.1090/S0002-9947-1964-0161372-1
- K. Petersen, A. Quas, and S. Shin, Mesures of Maximal relative Entropy, Ergod. Theory Dyn. Syst., 23, (2003), no. 1, 207-223. https://doi.org/10.1017/S0143385702001153
- P. Raith, Continuity of the Measure of Maximal Entropy for Unimodal Maps on the Interval, Qual. Theory Dyn. Syst. 4, (2003), no. 1, 67-76. https://doi.org/10.1007/BF02972823
- C. E. Shannon, A Mathematical Theory of Communication, Bell System Tech. J., 27, (1948), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- D. Smania, Phase space universality for multimodal maps, Bull. Braz. Math. Soc., 36, (2005), no. 2, 225-274. https://doi.org/10.1007/s00574-005-0038-y
- D. Smania, Renormalization Theory for Multimodal Maps, arXiv:math/0102129 [math.DS].