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THE LANDAU-DE GENNES ENERGY IN A SMALL

DOMAIN

Baek-Joong Kwon∗ and Jinhae Park∗∗

Abstract. In this paper, we investigate nontrivial equilibrium states
of the Landau-de Gennes energy functional in a small domain.

1. Introduction

In this article, a system of liquid crystals occupying a domain in R2

governed by the Landau-de Gennes energy functional is considered. A
liquid crystal is described by a symmetric and traceless 3× 3 matrix Q
which is given by

Q = s1(n⊗ n− 1

3
I) + s2(m⊗m− 1

3
I)

where u and m are 3-dimensional unit vectors perpendicular to each
other and si’s are constants and I is the identity 3× 3 matrix. We take
a simplified version of the Landau-de Gennes energy as

E(Q) =

∫
Ω
fL(Q) + fB(Q) dx

where

fL(Q) =
1

2
(L1Qij,kQij,k + L2Qij,jQik,k + L3Qij,kQik,j),

fB(Q) =
a

2
trQ2 − b

3
trQ3 +

c

4
(trQ2)2

Here, Qij,k =
∂Qij

∂xk
(the partial derivative of the (i, j)-component Qij of

Q with respect to xk), Li’s are material dependent constants, and the
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constants a < 0, b > 0, c > 0 are dependent of material and tempera-
ture. The energy density fL(Q and fB(Q) are called the bulk and elastic
energy respectively. For more details, we refer the reader to [2].

The problem we consider here is motivated by liquid crystal micro-
droplets, so called tactoids, which spontaneously nucleate from isotropic
dispersions followed by transforming into macroscopic anisotropic phases
[5]. Such a phenomena appears in polymeric and colloidal liquid crystals.
For simplicity, we take a two-dimensional liquid crystal tactoid governed
by the Landau-de Gennes energy functional. Let Ω be a bounded domain
containing the origin and

Ωr = {rx|x ∈ Ω}.

Furthermore, we assume that the second order parameter Q takes a form

Q =

[
u1 u2

u2 −u1

]
.

Then the Landau-de Gennes energy functional is reduced to

E(u) =

∫
Ωr

L

2
|∇u|2 + (L2 − L3) det (∇u) + a|u|2 + c|u|4 dx.

where L = 2L1 + L2 + L3,u = (u1, u2). The corresponding Euler-
Lagrange equation with Dirichlet boundary condition u = 0 on ∂Ωr is
given by {

−L∆u + 2au + 4c|u|2u = 0 in Ωr,
u = 0 on ∂Ωr.

In the following section, we study existence of nontrivial solutions of
the previous equation.

2. Existence of nontrivial solutions

We assume that the elastic constants Li are very small so that Li <<
a, b, c. Since the Landau-de Gennes energy functional is written as

E(u) =

∫
Ωr

{
L

2
|∇u|2 + c

(
|u|2 +

a

2c

)2
− a2

4c

}
dx

=

∫
Ωr

{
L

2
|∇u|2 +

a2

4c

(
2c

−a
|u|2 − 1

)2

− a2

4c

}
dx,
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After scaling ũ =
√

2c
−au, we replace E(u) by

(2.1) E(u) =

∫
Ωr

{
1

2
|∇u|2 − a

2L

(
|u|2 − 1

)2}
dx,

The Euler-Lagrange equation corresponding to (2.1) with u = 0 on
∂Ωr is given by{

−∆u− 2a
L u(|u|2 − 1) = 0 in Ωr,
u = 0 on ∂Ωr.

(2.2)

We denote H1
0 (Ω,R2) by X and let Y = H−1(Ω,R2) be the dual space

of H1
0 (Ω,R2). Define J : R×X → Y by

J(r,u)(v) =

∫
Ω

(
−∆u− 2ar2

L
u(|u|2 − 1)

)
· v dx

for (r,u) ∈ R × X and v ∈ X. If −2ar20
L is a simple eigenvalue of −∆

with the Dirichlet boundary condition, then we have

Ju(r0, 0)(h) : v→
∫

Ω

(
−∆h +

2ar2
0

L
h

)
· v dx,

and ker (Ju(r0, 0)) = {(α, β)φ | (α, β) ∈ R2}, where{
−∆φ = −2ar20

L φ in Ω

φ = 0 on ∂Ω,
∫

Ω φ
2 = 1.

(2.3)

Since dim ker (Ju(r0, 0)) = 2, we cannot apply Theorem 4.1 given in [1].
For each (α, β) ∈ R2, we let Γ(α,β) : R × H1

0 (Ω,R) → H−1(Ω,R) be
defined by

Γ(α,β)(r, u)(v) =

∫
Ω

(
−∆u− 2ar2

L

(
(α2 + β2)u3 − u

))
v dx

for all v ∈ H1
0 (Ω,R). It is immediate that(
Γ(α,β)

)
u

(r, 0)(h)(v) =

∫
Ω

(
−∆h+

2ar2

L
h

)
v dx

for all h, v ∈ H1
0 (Ω,R).

Lemma 2.1. If −2ar20
L is a simple eigenvalue of −∆ with the Dirichlet

boundary condition, then we have

(I) dim ker
((

Γ(α,β)

)
u

(r0, 0)
)

= 1,

(II) R = Range
((

Γ(α,β)

)
u

(r0, 0)
)

is closed,
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(III)
(
Γ(α,β)

)
u,r

(r0, 0)(φ) /∈ R.

Proof. Let V = ker
((

Γ(α,β)

)
u

(r0, 0)
)

andR = Range
((

Γ(α,β)

)
u

(r0, 0)
)

.

Then V = span{φ} and thus dim(V ) = 1. Since H1
0 (Ω,R) is Hilbert

space, H1
0 (Ω,R) = span{φ} ⊕W where W = (span{φ})⊥. Hence W is

closed. We see that R =
(
Γ(α,β)

)
u

(r0, 0) (W ) and R is closed.

It follows from (2) that for any w ∈W = V ⊥,∫
Ω

−2ar2
0

L
wφ dx =

∫
Ω
w

(
−2ar2

0

L
φ

)
dx =

∫
Ω
w(−∆φ) dx

=

∫
Ω
∇w · ∇φ dx =< w,φ >H1

0 (Ω,R)= 0.

Since (−∆)−1 is a compact operator [3], by Fredholm alternative [1] we
have that for any w ∈ H1

0 (Ω,R),< w,φ >H1
0 (Ω,R)= 0, the problem{

−∆h+
2ar20
L h = −2ar20

L w in Ω,
h = 0 on ∂Ω

(2.4)

has a weak solution h ∈ H1
0 (Ω,R).

Now, we are in a position to show that codim(R) = 1. Let T ∈
H−1(Ω,R) be given. By Riesz’s representation theorem, there exists
t ∈ H1

0 (B,R) such that

T (v) =< t, v >H1
0 (Ω,R)=

∫
Ω
∇t · ∇v dx =

∫
Ω

(−∆t) v dx

for all v ∈ H1
0 (Ω,R).

Since t = δφ+ w0 for some w0 ∈W, δ ∈ R, we have

T (v) =

∫
Ω

(−∆(δφ+ w0))v dx = δ

∫
Ω

(−∆φ)v dx+

∫
Ω

(−∆w0)v dx.

Since w0 ∈W , it follows from (2.4) that{
−∆h+

2ar20
L h = −2ar20

L w0 in Ω,
h = 0 on ∂Ω

has a weak solution h0 ∈ H1
0 (Ω,R). Let s = h0 + w0. Then we get∫

Ω
(−∆w0)v dx =

∫
Ω

(−∆s+
2ar2

0

L
s)v dx for all v ∈ H1

0 (Ω,R).
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We obtain that

T (v) = δ

∫
Ω

(−∆φ)v dx+

∫
Ω

(−∆w)v dx.

= δ

∫
Ω

(−∆φ)v dx+

∫
Ω

(−∆s+
2ar2

0

L
s)v dx.

= δΦ(v) +
(
Γ(α,β)

)
(r0, 0)(s)(v)

where Φ ∈ H1
0 (Ω,R) is defined by Φ(v) =< φ, v >H1

0 (Ω,R)=
∫

Ω(−∆φ)v dx.

Hence, H−1(Ω,R) = span{Φ} ⊕R and thus codim(R) = 1.
In order to show (III), we fist note that for any v ∈ H1

0 (Ω,R), we get(
Γ(α,β)

)
u,r

(r0, 0)(φ)(v) =

∫
Ω

4ar0

L
φv dx.

This implies that
(
Γ(α,β)

)
u,r

(r0, 0)(φ) ∈ span{Φ} = H−1(Ω,R) \R.

For each (α, β) ∈ R2, it follows from Theorem 4.1 in [1] that r0 is a
bifurcation point for Γ(α,β). This enables us to conclude the following
theorem.

Theorem 2.2. If −2ar20
L is a simple eigenvalue of −∆ with the Dirich-

let boundary condition, then r0 is a bifurcation point for J .

Proof. For (α, β) ∈ R2, we know that r0 is a bifurcation point for
Γ(α,β). Let {(rn, un)} be a sequence such that{

Γ(α,β)(rn, un) = 0, ||un|| 6= 0,

(rn, un)→ (r0, 0) as n→∞.

Then for any v = (v1, v2) ∈ H1
0 (Ω,R2), we get

0 = αΓ(α,β)(rn, un)(v1) + βΓ(α,β)(rn, un)(v2)

=

∫
Ω

(
−∆un −

2ar2
n

L
((α2 + β2)u2

n − 1)un

)
(αv1 + βv2) dx

=

∫
Ω

(
−∆un −

2ar2
n

L
(|un|2 − 1)un

)
· v dx

= J(rn,un)(v)

where un = (α, β)un. Hence (rn,un) be a sequence such that{
J(rn,un) = 0,

(rn,un)→ (r0, 0) as n→∞.
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Therefore r0 is bifurcation point for J .

Corollary 2.3. Suppose that there exists r0 ∈ R such that −2ar20
L

is simple eigenvalue of −∆ with the Dirichlet boundary condition. Then
for r which is sufficiently close to r0, there exists a nontrivial solution
ûr ∈ H1

0 (Ωr,R
2) for (2.2).

Proof. It follows from the previous theorem that for r which is suffi-
ciently close to r0, there exists a nontrivial weak solution ur ∈ H1

0 (Ω,R2)
that is

J(r,ur)(v) = 0 for any v ∈ H1
0 (Ω,R2)

Then we have{
−∆ur − 2ar2

L ur(|ur|2 − 1) = 0 in Ω,
ur = 0 on ∂Ω.

For any x̂ ∈ Ωr, let ûr(x̂) = ur(x̂/r). Then ûr satisfies (2.2).

Remark 2.4. In fact, the solution ûr found in Corollary 2.3 satisfies

ûr = ±
√
r − r0

e
(α, β)φ+O(r − r0) for some e > 0,

where α2 + β2 ≈ (r+r0)e
r2A

, A =
∫

Ω φ
4 dx. This can be proved by the

Liapunov-Schmidt reduction[1, 4] and the arguments of chapter 5 in [1].
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