THE LANDAU-DE GENNES ENERGY IN A SMALL DOMAIN

BaEk-Joong Kwon* and Jinhae Park**

Abstract

In this paper, we investigate nontrivial equilibrium states of the Landau-de Gennes energy functional in a small domain.

1. Introduction

In this article, a system of liquid crystals occupying a domain in \mathbf{R}^{2} governed by the Landau-de Gennes energy functional is considered. A liquid crystal is described by a symmetric and traceless 3×3 matrix \mathbf{Q} which is given by

$$
\mathbf{Q}=s_{1}\left(\mathbf{n} \otimes \mathbf{n}-\frac{1}{3} \mathbf{I}\right)+s_{2}\left(\mathbf{m} \otimes \mathbf{m}-\frac{1}{3} \mathbf{I}\right)
$$

where \mathbf{u} and \mathbf{m} are 3 -dimensional unit vectors perpendicular to each other and s_{i} 's are constants and \mathbf{I} is the identity 3×3 matrix. We take a simplified version of the Landau-de Gennes energy as

$$
E(\mathbf{Q})=\int_{\Omega} f_{L}(\mathbf{Q})+f_{B}(\mathbf{Q}) d x
$$

where

$$
\begin{aligned}
f_{L}(\mathbf{Q}) & =\frac{1}{2}\left(L_{1} Q_{i j, k} Q_{i j, k}+L_{2} Q_{i j, j} Q_{i k, k}+L_{3} Q_{i j, k} Q_{i k, j}\right) \\
f_{B}(\mathbf{Q}) & =\frac{a}{2} \operatorname{tr} \mathbf{Q}^{2}-\frac{b}{3} \operatorname{tr} \mathbf{Q}^{3}+\frac{c}{4}\left(\operatorname{tr} \mathbf{Q}^{2}\right)^{2}
\end{aligned}
$$

Here, $Q_{i j, k}=\frac{\partial Q_{i j}}{\partial x_{k}}$ (the partial derivative of the (i, j)-component $Q_{i j}$ of \mathbf{Q} with respect to x_{k}), L_{i} 's are material dependent constants, and the

Received January 24, 2021; Accepted January 26, 2021.
2010 Mathematics Subject Classification: Primary 46T99, 34A34; Secondary 34K18, 49J99.

Key words and phrases: liquid crystal,bifurcation, nontrivial solution.
Correspondence should be addressed to Jinhae Park, jhpark2003@cnu.ac.kr.
This work was financially supported by the National Research Foundation of Korea with Grant No. 2017R1D1A1B06033070.
constants $a<0, b>0, c>0$ are dependent of material and temperature. The energy density $f_{L}\left(\mathbf{Q}\right.$ and $f_{B}(\mathbf{Q})$ are called the bulk and elastic energy respectively. For more details, we refer the reader to [2].

The problem we consider here is motivated by liquid crystal microdroplets, so called tactoids, which spontaneously nucleate from isotropic dispersions followed by transforming into macroscopic anisotropic phases [5]. Such a phenomena appears in polymeric and colloidal liquid crystals. For simplicity, we take a two-dimensional liquid crystal tactoid governed by the Landau-de Gennes energy functional. Let Ω be a bounded domain containing the origin and

$$
\Omega_{r}=\{r x \mid x \in \Omega\}
$$

Furthermore, we assume that the second order parameter \mathbf{Q} takes a form

$$
\mathbf{Q}=\left[\begin{array}{cc}
u_{1} & u_{2} \\
u_{2} & -u_{1}
\end{array}\right]
$$

Then the Landau-de Gennes energy functional is reduced to

$$
E(\mathbf{u})=\int_{\Omega_{r}} \frac{L}{2}|\nabla \mathbf{u}|^{2}+\left(L_{2}-L_{3}\right) \operatorname{det}(\nabla \mathbf{u})+a|\mathbf{u}|^{2}+c|\mathbf{u}|^{4} d x
$$

where $L=2 L_{1}+L_{2}+L_{3}, \mathbf{u}=\left(u_{1}, u_{2}\right)$. The corresponding EulerLagrange equation with Dirichlet boundary condition $\mathbf{u}=0$ on $\partial \Omega_{r}$ is given by

$$
\left\{\begin{array}{cc}
-L \Delta \mathbf{u}+2 a \mathbf{u}+4 c|\mathbf{u}|^{2} \mathbf{u}=0 & \text { in } \Omega_{r} \\
\mathbf{u}=0 & \text { on } \partial \Omega_{r}
\end{array}\right.
$$

In the following section, we study existence of nontrivial solutions of the previous equation.

2. Existence of nontrivial solutions

We assume that the elastic constants L_{i} are very small so that $L_{i} \ll$ a, b, c. Since the Landau-de Gennes energy functional is written as

$$
\begin{aligned}
& E(\mathbf{u})=\int_{\Omega_{r}}\left\{\frac{L}{2}|\nabla \mathbf{u}|^{2}+c\left(|\mathbf{u}|^{2}+\frac{a}{2 c}\right)^{2}-\frac{a^{2}}{4 c}\right\} d x \\
& =\int_{\Omega_{r}}\left\{\frac{L}{2}|\nabla \mathbf{u}|^{2}+\frac{a^{2}}{4 c}\left(\frac{2 c}{-a}|\mathbf{u}|^{2}-1\right)^{2}-\frac{a^{2}}{4 c}\right\} d x
\end{aligned}
$$

After scaling $\tilde{\mathbf{u}}=\sqrt{\frac{2 c}{-a}} \mathbf{u}$, we replace $E(\mathbf{u})$ by

$$
\begin{equation*}
E(\mathbf{u})=\int_{\Omega_{r}}\left\{\frac{1}{2}|\nabla \mathbf{u}|^{2}-\frac{a}{2 L}\left(|\mathbf{u}|^{2}-1\right)^{2}\right\} d x \tag{2.1}
\end{equation*}
$$

The Euler-Lagrange equation corresponding to (2.1) with $\mathbf{u}=0$ on $\partial \Omega_{r}$ is given by

$$
\left\{\begin{array}{cc}
-\Delta \mathbf{u}-\frac{2 a}{L} \mathbf{u}\left(|\mathbf{u}|^{2}-1\right)=0 & \text { in } \Omega_{r} \tag{2.2}\\
\mathbf{u}=0 & \text { on } \partial \Omega_{r}
\end{array}\right.
$$

We denote $H_{0}^{1}\left(\Omega, \mathbf{R}^{2}\right)$ by X and let $Y=H^{-1}\left(\Omega, \mathbf{R}^{2}\right)$ be the dual space of $H_{0}^{1}\left(\Omega, \mathbf{R}^{2}\right)$. Define $J: \mathbf{R} \times X \rightarrow Y$ by

$$
J(r, \mathbf{u})(\mathbf{v})=\int_{\Omega}\left(-\Delta \mathbf{u}-\frac{2 a r^{2}}{L} \mathbf{u}\left(|\mathbf{u}|^{2}-1\right)\right) \cdot \mathbf{v} d x
$$

for $(r, \mathbf{u}) \in \mathbf{R} \times X$ and $\mathbf{v} \in X$. If $-\frac{2 a r_{0}^{2}}{L}$ is a simple eigenvalue of $-\Delta$ with the Dirichlet boundary condition, then we have

$$
J_{\mathbf{u}}\left(r_{0}, 0\right)(\mathbf{h}): \mathbf{v} \rightarrow \int_{\Omega}\left(-\Delta \mathbf{h}+\frac{2 a r_{0}^{2}}{L} \mathbf{h}\right) \cdot \mathbf{v} d x
$$

and $\operatorname{ker}\left(J_{\mathbf{u}}\left(r_{0}, 0\right)\right)=\left\{(\alpha, \beta) \phi \mid(\alpha, \beta) \in \mathbf{R}^{2}\right\}$, where

$$
\left\{\begin{array}{l}
-\Delta \phi=-\frac{2 a r_{0}^{2}}{L} \phi \text { in } \Omega \tag{2.3}\\
\phi=0 \text { on } \partial \Omega, \quad \int_{\Omega} \phi^{2}=1
\end{array}\right.
$$

Since dim $\operatorname{ker}\left(J_{\mathbf{u}}\left(r_{0}, 0\right)\right)=2$, we cannot apply Theorem 4.1 given in [1]. For each $(\alpha, \beta) \in \mathbf{R}^{2}$, we let $\Gamma_{(\alpha, \beta)}: \mathbf{R} \times H_{0}^{1}(\Omega, \mathbf{R}) \rightarrow H^{-1}(\Omega, \mathbf{R})$ be defined by

$$
\Gamma_{(\alpha, \beta)}(r, u)(v)=\int_{\Omega}\left(-\Delta u-\frac{2 a r^{2}}{L}\left(\left(\alpha^{2}+\beta^{2}\right) u^{3}-u\right)\right) v d x
$$

for all $v \in H_{0}^{1}(\Omega, \mathbf{R})$. It is immediate that

$$
\left(\Gamma_{(\alpha, \beta)}\right)_{u}(r, 0)(h)(v)=\int_{\Omega}\left(-\Delta h+\frac{2 a r^{2}}{L} h\right) v d x
$$

for all $h, v \in H_{0}^{1}(\Omega, \mathbf{R})$.
Lemma 2.1. If $-\frac{2 a r_{0}^{2}}{L}$ is a simple eigenvalue of $-\Delta$ with the Dirichlet boundary condition, then we have
(I) dim $\operatorname{ker}\left(\left(\Gamma_{(\alpha, \beta)}\right)_{u}\left(r_{0}, 0\right)\right)=1$,
(II) $\mathcal{R}=$ Range $\left(\left(\Gamma_{(\alpha, \beta)}\right)_{u}\left(r_{0}, 0\right)\right)$ is closed,
(III) $\left(\Gamma_{(\alpha, \beta)}\right)_{u, r}\left(r_{0}, 0\right)(\phi) \notin \mathcal{R}$.

Proof. Let $V=\operatorname{ker}\left(\left(\Gamma_{(\alpha, \beta)}\right)_{u}\left(r_{0}, 0\right)\right)$ and $\mathcal{R}=\operatorname{Range}\left(\left(\Gamma_{(\alpha, \beta)}\right)_{u}\left(r_{0}, 0\right)\right)$. Then $V=\operatorname{span}\{\phi\}$ and thus $\operatorname{dim}(V)=1$. Since $H_{0}^{1}(\Omega, \mathbf{R})$ is Hilbert space, $H_{0}^{1}(\Omega, \mathbf{R})=\operatorname{span}\{\phi\} \oplus W$ where $W=(\operatorname{span}\{\phi\})^{\perp}$. Hence W is closed. We see that $\mathcal{R}=\left(\Gamma_{(\alpha, \beta)}\right)_{u}\left(r_{0}, 0\right)(W)$ and \mathcal{R} is closed.

It follows from (2) that for any $w \in W=V^{\perp}$,

$$
\begin{aligned}
\int_{\Omega} \frac{-2 a r_{0}^{2}}{L} w \phi d x & =\int_{\Omega} w\left(\frac{-2 a r_{0}^{2}}{L} \phi\right) d x=\int_{\Omega} w(-\Delta \phi) d x \\
& =\int_{\Omega} \nabla w \cdot \nabla \phi d x=<w, \phi>_{H_{0}^{1}(\Omega, \mathbf{R})}=0 .
\end{aligned}
$$

Since $(-\Delta)^{-1}$ is a compact operator [3], by Fredholm alternative [1] we have that for any $w \in H_{0}^{1}(\Omega, \mathbf{R}),\left\langle w, \phi>_{H_{0}^{1}(\Omega, \mathbb{R})}=0\right.$, the problem

$$
\left\{\begin{array}{cc}
-\Delta h+\frac{2 a r_{0}^{2}}{L} h=-\frac{2 a r_{0}^{2}}{L} w & \text { in } \Omega, \tag{2.4}\\
h=0 & \text { on } \partial \Omega
\end{array}\right.
$$

has a weak solution $h \in H_{0}^{1}(\Omega, \mathbf{R})$.
Now, we are in a position to show that $\operatorname{codim}(\mathcal{R})=1$. Let $T \in$ $H^{-1}(\Omega, \mathbf{R})$ be given. By Riesz's representation theorem, there exists $t \in H_{0}^{1}(B, \mathbf{R})$ such that

$$
T(v)=\langle t, v\rangle_{H_{0}^{1}(\Omega, \mathbf{R})}=\int_{\Omega} \nabla t \cdot \nabla v d x=\int_{\Omega}(-\Delta t) v d x
$$

for all $v \in H_{0}^{1}(\Omega, \mathbf{R})$.
Since $t=\delta \phi+w_{0}$ for some $w_{0} \in W, \delta \in \mathbf{R}$, we have

$$
T(v)=\int_{\Omega}\left(-\Delta\left(\delta \phi+w_{0}\right)\right) v d x=\delta \int_{\Omega}(-\Delta \phi) v d x+\int_{\Omega}\left(-\Delta w_{0}\right) v d x .
$$

Since $w_{0} \in W$, it follows from (2.4) that

$$
\left\{\begin{array}{cc}
-\Delta h+\frac{2 a r_{0}^{2}}{L} h=-\frac{2 a r_{0}^{2}}{L} w_{0} & \text { in } \Omega, \\
h=0 & \text { on } \partial \Omega
\end{array}\right.
$$

has a weak solution $h_{0} \in H_{0}^{1}(\Omega, \mathbf{R})$. Let $s=h_{0}+w_{0}$. Then we get

$$
\int_{\Omega}\left(-\Delta w_{0}\right) v d x=\int_{\Omega}\left(-\Delta s+\frac{2 a r_{0}^{2}}{L} s\right) v d x \text { for all } v \in H_{0}^{1}(\Omega, \mathbf{R}) .
$$

We obtain that

$$
\begin{aligned}
T(v) & =\delta \int_{\Omega}(-\Delta \phi) v d x+\int_{\Omega}(-\Delta w) v d x \\
& =\delta \int_{\Omega}(-\Delta \phi) v d x+\int_{\Omega}\left(-\Delta s+\frac{2 a r_{0}^{2}}{L} s\right) v d x \\
& =\delta \Phi(v)+\left(\Gamma_{(\alpha, \beta)}\right)\left(r_{0}, 0\right)(s)(v)
\end{aligned}
$$

where $\Phi \in H_{0}^{1}(\Omega, \mathbf{R})$ is defined by $\Phi(v)=<\phi, v>_{H_{0}^{1}(\Omega, \mathbf{R})}=\int_{\Omega}(-\Delta \phi) v d x$. Hence, $H^{-1}(\Omega, \mathbf{R})=\operatorname{span}\{\Phi\} \oplus \mathcal{R}$ and thus $\operatorname{codim}(\mathcal{R})=1$.

In order to show (III), we fist note that for any $v \in H_{0}^{1}(\Omega, \mathbf{R})$, we get

$$
\left(\Gamma_{(\alpha, \beta)}\right)_{u, r}\left(r_{0}, 0\right)(\phi)(v)=\int_{\Omega} \frac{4 a r_{0}}{L} \phi v d x
$$

This implies that $\left(\Gamma_{(\alpha, \beta)}\right)_{u, r}\left(r_{0}, 0\right)(\phi) \in \operatorname{span}\{\Phi\}=H^{-1}(\Omega, \mathbf{R}) \backslash \mathcal{R}$.
For each $(\alpha, \beta) \in \mathbf{R}^{2}$, it follows from Theorem 4.1 in [1] that r_{0} is a bifurcation point for $\Gamma_{(\alpha, \beta)}$. This enables us to conclude the following theorem.

THEOREM 2.2. If $-\frac{2 a r_{0}^{2}}{L}$ is a simple eigenvalue of $-\Delta$ with the Dirichlet boundary condition, then r_{0} is a bifurcation point for J.

Proof. For $(\alpha, \beta) \in \mathbb{R}^{2}$, we know that r_{0} is a bifurcation point for $\Gamma_{(\alpha, \beta)}$. Let $\left\{\left(r_{n}, u_{n}\right)\right\}$ be a sequence such that

$$
\left\{\begin{array}{l}
\Gamma_{(\alpha, \beta)}\left(r_{n}, u_{n}\right)=0,\left\|u_{n}\right\| \neq 0 \\
\left(r_{n}, u_{n}\right) \rightarrow\left(r_{0}, 0\right) \text { as } n \rightarrow \infty
\end{array}\right.
$$

Then for any $\mathbf{v}=\left(v_{1}, v_{2}\right) \in H_{0}^{1}\left(\Omega, \mathbf{R}^{2}\right)$, we get

$$
\begin{aligned}
0 & =\alpha \Gamma_{(\alpha, \beta)}\left(r_{n}, u_{n}\right)\left(v_{1}\right)+\beta \Gamma_{(\alpha, \beta)}\left(r_{n}, u_{n}\right)\left(v_{2}\right) \\
& =\int_{\Omega}\left(-\Delta u_{n}-\frac{2 a r_{n}^{2}}{L}\left(\left(\alpha^{2}+\beta^{2}\right) u_{n}^{2}-1\right) u_{n}\right)\left(\alpha v_{1}+\beta v_{2}\right) d x \\
& =\int_{\Omega}\left(-\Delta \mathbf{u}_{n}-\frac{2 a r_{n}^{2}}{L}\left(\left|\mathbf{u}_{n}\right|^{2}-1\right) \mathbf{u}_{n}\right) \cdot \mathbf{v} d x \\
& =J\left(r_{n}, \mathbf{u}_{n}\right)(\mathbf{v})
\end{aligned}
$$

where $\mathbf{u}_{n}=(\alpha, \beta) u_{n}$. Hence $\left(r_{n}, \mathbf{u}_{n}\right)$ be a sequence such that

$$
\left\{\begin{array}{l}
J\left(r_{n}, \mathbf{u}_{n}\right)=0 \\
\left(r_{n}, \mathbf{u}_{n}\right) \rightarrow\left(r_{0}, 0\right) \text { as } n \rightarrow \infty
\end{array}\right.
$$

Therefore r_{0} is bifurcation point for J.

Corollary 2.3. Suppose that there exists $r_{0} \in \mathbf{R}$ such that $-\frac{2 a r_{0}^{2}}{L}$ is simple eigenvalue of $-\Delta$ with the Dirichlet boundary condition. Then for r which is sufficiently close to r_{0}, there exists a nontrivial solution $\hat{\mathbf{u}}_{r} \in H_{0}^{1}\left(\Omega_{r}, \mathbf{R}^{2}\right)$ for (2.2).

Proof. It follows from the previous theorem that for r which is sufficiently close to r_{0}, there exists a nontrivial weak solution $\mathbf{u}_{r} \in H_{0}^{1}\left(\Omega, \mathbf{R}^{2}\right)$ that is

$$
J\left(r, \mathbf{u}_{r}\right)(\mathbf{v})=0 \text { for any } \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbf{R}^{2}\right)
$$

Then we have

$$
\left\{\begin{array}{cc}
-\Delta \mathbf{u}_{r}-\frac{2 a r^{2}}{L} \mathbf{u}_{r}\left(\left|\mathbf{u}_{r}\right|^{2}-1\right)=0 & \text { in } \Omega \\
\mathbf{u}_{r}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

For any $\hat{x} \in \Omega_{r}$, let $\hat{\mathbf{u}}_{r}(\hat{x})=\mathbf{u}_{r}(\hat{x} / r)$. Then $\hat{\mathbf{u}}_{r}$ satisfies (2.2).

REmark 2.4. In fact, the solution $\hat{\mathbf{u}}_{r}$ found in Corollary 2.3 satisfies

$$
\hat{\mathbf{u}}_{r}= \pm \sqrt{\frac{r-r_{0}}{e}}(\alpha, \beta) \phi+O\left(r-r_{0}\right) \text { for some } e>0
$$

where $\alpha^{2}+\beta^{2} \approx \frac{\left(r+r_{0}\right) e}{r^{2} A}, A=\int_{\Omega} \phi^{4} d x$. This can be proved by the Liapunov-Schmidt reduction $[1,4]$ and the arguments of chapter 5 in [1].

References

[1] A. Ambrosetti and G. Prodi, A primer of Nonlinear Analysis, Cambridge University Press, Cambridge, 1995.
[2] P. Bauman, J. Park and D. Phillips, Analysis of nematic liquid crystals with disclination lines. Arch. Ration. Mech. Anal., 205 (2012), no. 3, 795826.
[3] L.C. Evans, Partial Differential Equations,2nd edition, AMS, 2010.
[4] M. Golubitsky and D. G. Schaffer, Singularities and groups in bifurcation theory. Vol. I, Springer-Verlag, New York, 1984.
[5] P. Wang and M. J. MacLachlan, Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries, Philos. Trans. R. Soc. Lond. Ser. A., 376 (2018), no. 2112.

*

Department of Mathematics Chungnam National University
Daejeon 34134, Republic of Korea
E-mail: qorwnd0718@naver.com
**
Department of Mathematics
Chungnam National University
Daejeon 34134, Republic of Korea
E-mail: jhpark2003@cnu.ac.kr

