JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **34**, No. 1, February 2021 http://dx.doi.org/10.14403/jcms.2021.34.1.61

THE LANDAU-DE GENNES ENERGY IN A SMALL DOMAIN

BAEK-JOONG KWON* AND JINHAE PARK**

ABSTRACT. In this paper, we investigate nontrivial equilibrium states of the Landau-de Gennes energy functional in a small domain.

1. Introduction

In this article, a system of liquid crystals occupying a domain in \mathbb{R}^2 governed by the Landau-de Gennes energy functional is considered. A liquid crystal is described by a symmetric and traceless 3×3 matrix \mathbb{Q} which is given by

$$\mathbf{Q} = s_1(\mathbf{n} \otimes \mathbf{n} - \frac{1}{3}\mathbf{I}) + s_2(\mathbf{m} \otimes \mathbf{m} - \frac{1}{3}\mathbf{I})$$

where **u** and **m** are 3-dimensional unit vectors perpendicular to each other and s_i 's are constants and **I** is the identity 3×3 matrix. We take a simplified version of the Landau-de Gennes energy as

$$E(\mathbf{Q}) = \int_{\Omega} f_L(\mathbf{Q}) + f_B(\mathbf{Q}) \, dx$$

where

$$f_L(\mathbf{Q}) = \frac{1}{2} (L_1 Q_{ij,k} Q_{ij,k} + L_2 Q_{ij,j} Q_{ik,k} + L_3 Q_{ij,k} Q_{ik,j}),$$

$$f_B(\mathbf{Q}) = \frac{a}{2} tr \mathbf{Q}^2 - \frac{b}{3} tr \mathbf{Q}^3 + \frac{c}{4} (tr \mathbf{Q}^2)^2$$

Here, $Q_{ij,k} = \frac{\partial Q_{ij}}{\partial x_k}$ (the partial derivative of the (i, j)-component Q_{ij} of **Q** with respect to x_k), L_i 's are material dependent constants, and the

Received January 24, 2021; Accepted January 26, 2021.

²⁰¹⁰ Mathematics Subject Classification: Primary 46T99, 34A34; Secondary 34K18, 49J99.

Key words and phrases: liquid crystal, bifurcation, nontrivial solution.

Correspondence should be addressed to Jinhae Park, jhpark2003@cnu.ac.kr.

This work was financially supported by the National Research Foundation of Korea with Grant No. 2017R1D1A1B06033070.

constants a < 0, b > 0, c > 0 are dependent of material and temperature. The energy density $f_L(\mathbf{Q} \text{ and } f_B(\mathbf{Q}))$ are called the bulk and elastic energy respectively. For more details, we refer the reader to [2].

The problem we consider here is motivated by liquid crystal microdroplets, so called tactoids, which spontaneously nucleate from isotropic dispersions followed by transforming into macroscopic anisotropic phases [5]. Such a phenomena appears in polymeric and colloidal liquid crystals. For simplicity, we take a two-dimensional liquid crystal tactoid governed by the Landau-de Gennes energy functional. Let Ω be a bounded domain containing the origin and

$$\Omega_r = \{ rx | x \in \Omega \}.$$

Furthermore, we assume that the second order parameter \mathbf{Q} takes a form

$$\mathbf{Q} = \begin{bmatrix} u_1 & u_2 \\ u_2 & -u_1 \end{bmatrix}$$

Then the Landau-de Gennes energy functional is reduced to

$$E(\mathbf{u}) = \int_{\Omega_r} \frac{L}{2} |\nabla \mathbf{u}|^2 + (L_2 - L_3) \det(\nabla \mathbf{u}) + a |\mathbf{u}|^2 + c |\mathbf{u}|^4 \, dx.$$

where $L = 2L_1 + L_2 + L_3$, $\mathbf{u} = (u_1, u_2)$. The corresponding Euler-Lagrange equation with Dirichlet boundary condition $\mathbf{u} = 0$ on $\partial \Omega_r$ is given by

$$\begin{cases} -L\Delta \mathbf{u} + 2a\mathbf{u} + 4c|\mathbf{u}|^2\mathbf{u} = 0 & \text{in } \Omega_r, \\ \mathbf{u} = 0 & \text{on } \partial\Omega_r. \end{cases}$$

In the following section, we study existence of nontrivial solutions of the previous equation.

2. Existence of nontrivial solutions

We assume that the elastic constants L_i are very small so that $L_i \ll a, b, c$. Since the Landau-de Gennes energy functional is written as

$$E(\mathbf{u}) = \int_{\Omega_r} \left\{ \frac{L}{2} |\nabla \mathbf{u}|^2 + c \left(|\mathbf{u}|^2 + \frac{a}{2c} \right)^2 - \frac{a^2}{4c} \right\} dx$$
$$= \int_{\Omega_r} \left\{ \frac{L}{2} |\nabla \mathbf{u}|^2 + \frac{a^2}{4c} \left(\frac{2c}{-a} |\mathbf{u}|^2 - 1 \right)^2 - \frac{a^2}{4c} \right\} dx,$$

After scaling $\tilde{\mathbf{u}} = \sqrt{\frac{2c}{-a}}\mathbf{u}$, we replace $E(\mathbf{u})$ by

(2.1)
$$E(\mathbf{u}) = \int_{\Omega_r} \left\{ \frac{1}{2} |\nabla \mathbf{u}|^2 - \frac{a}{2L} \left(|\mathbf{u}|^2 - 1 \right)^2 \right\} dx,$$

The Euler-Lagrange equation corresponding to (2.1) with $\mathbf{u} = 0$ on $\partial \Omega_r$ is given by

(2.2)
$$\begin{cases} -\Delta \mathbf{u} - \frac{2a}{L} \mathbf{u} (|\mathbf{u}|^2 - 1) = 0 & \text{in } \Omega_r, \\ \mathbf{u} = 0 & \text{on } \partial \Omega_r. \end{cases}$$

We denote $H_0^1(\Omega, \mathbf{R}^2)$ by X and let $Y = H^{-1}(\Omega, \mathbf{R}^2)$ be the dual space of $H_0^1(\Omega, \mathbf{R}^2)$. Define $J : \mathbf{R} \times X \to Y$ by

$$J(r, \mathbf{u})(\mathbf{v}) = \int_{\Omega} \left(-\Delta \mathbf{u} - \frac{2ar^2}{L} \mathbf{u}(|\mathbf{u}|^2 - 1) \right) \cdot \mathbf{v} \, dx$$

for $(r, \mathbf{u}) \in \mathbf{R} \times X$ and $\mathbf{v} \in X$. If $-\frac{2ar_0^2}{L}$ is a simple eigenvalue of $-\Delta$ with the Dirichlet boundary condition, then we have

$$J_{\mathbf{u}}(r_0,0)(\mathbf{h}): \mathbf{v} \to \int_{\Omega} \left(-\Delta \mathbf{h} + \frac{2ar_0^2}{L} \mathbf{h} \right) \cdot \mathbf{v} \, dx,$$

and ker $(J_{\mathbf{u}}(r_0, 0)) = \{(\alpha, \beta)\phi \mid (\alpha, \beta) \in \mathbf{R}^2\}$, where

(2.3)
$$\begin{cases} -\Delta\phi = -\frac{2ar_0^2}{L}\phi \text{ in }\Omega\\ \phi = 0 \text{ on }\partial\Omega, \quad \int_{\Omega}\phi^2 = 1 \end{cases}$$

Since dim ker $(J_{\mathbf{u}}(r_0, 0)) = 2$, we cannot apply Theorem 4.1 given in [1]. For each $(\alpha, \beta) \in \mathbf{R}^2$, we let $\Gamma_{(\alpha,\beta)} : \mathbf{R} \times H^1_0(\Omega, \mathbf{R}) \to H^{-1}(\Omega, \mathbf{R})$ be defined by

$$\Gamma_{(\alpha,\beta)}(r,u)(v) = \int_{\Omega} \left(-\Delta u - \frac{2ar^2}{L} \left((\alpha^2 + \beta^2)u^3 - u \right) \right) v \, dx$$

for all $v \in H_0^1(\Omega, \mathbf{R})$. It is immediate that

$$\left(\Gamma_{(\alpha,\beta)}\right)_{u}(r,0)(h)(v) = \int_{\Omega} \left(-\Delta h + \frac{2ar^{2}}{L}h\right)v \, dx$$

for all $h, v \in H_0^1(\Omega, \mathbf{R})$.

LEMMA 2.1. If $-\frac{2ar_0^2}{L}$ is a simple eigenvalue of $-\Delta$ with the Dirichlet boundary condition, then we have

(I) $\dim \ker \left(\left(\Gamma_{(\alpha,\beta)} \right)_u (r_0,0) \right) = 1,$ (II) $\mathcal{R} = \operatorname{Range} \left(\left(\Gamma_{(\alpha,\beta)} \right)_u (r_0,0) \right)$ is closed, (III) $(\Gamma_{(\alpha,\beta)})_{u,r}(r_0,0)(\phi) \notin \mathcal{R}.$

Proof. Let $V = \ker \left(\left(\Gamma_{(\alpha,\beta)} \right)_u (r_0,0) \right)$ and $\mathcal{R} = \operatorname{Range} \left(\left(\Gamma_{(\alpha,\beta)} \right)_u (r_0,0) \right)$. Then $V = \operatorname{span}\{\phi\}$ and thus $\dim(V) = 1$. Since $H_0^1(\Omega, \mathbf{R})$ is Hilbert space, $H_0^1(\Omega, \mathbf{R}) = \operatorname{span}\{\phi\} \oplus W$ where $W = (\operatorname{span}\{\phi\})^{\perp}$. Hence W is closed. We see that $\mathcal{R} = \left(\Gamma_{(\alpha,\beta)} \right)_u (r_0,0) (W)$ and \mathcal{R} is closed.

It follows from (2) that for any $w \in W = V^{\perp}$

$$\int_{\Omega} \frac{-2ar_0^2}{L} w\phi \, dx = \int_{\Omega} w\left(\frac{-2ar_0^2}{L}\phi\right) \, dx = \int_{\Omega} w(-\Delta\phi) \, dx$$
$$= \int_{\Omega} \nabla w \cdot \nabla\phi \, dx = \langle w, \phi \rangle_{H^1_0(\Omega, \mathbf{R})} = 0.$$

Since $(-\Delta)^{-1}$ is a compact operator [3], by Fredholm alternative [1] we have that for any $w \in H_0^1(\Omega, \mathbf{R}), \langle w, \phi \rangle_{H_0^1(\Omega, \mathbb{R})} = 0$, the problem

(2.4)
$$\begin{cases} -\Delta h + \frac{2ar_0^2}{L}h = -\frac{2ar_0^2}{L}w & \text{in }\Omega, \\ h = 0 & \text{on }\partial\Omega \end{cases}$$

has a weak solution $h \in H_0^1(\Omega, \mathbf{R})$.

Now, we are in a position to show that $\operatorname{codim}(\mathcal{R}) = 1$. Let $T \in H^{-1}(\Omega, \mathbf{R})$ be given. By Riesz's representation theorem, there exists $t \in H^{1}_{0}(B, \mathbf{R})$ such that

$$T(v) = \langle t, v \rangle_{H^1_0(\Omega, \mathbf{R})} = \int_{\Omega} \nabla t \cdot \nabla v \, dx = \int_{\Omega} (-\Delta t) \, v \, dx$$

for all $v \in H_0^1(\Omega, \mathbf{R})$.

Since $t = \delta \phi + w_0$ for some $w_0 \in W, \delta \in \mathbf{R}$, we have

$$T(v) = \int_{\Omega} (-\Delta(\delta\phi + w_0))v \, dx = \delta \int_{\Omega} (-\Delta\phi)v \, dx + \int_{\Omega} (-\Delta w_0)v \, dx.$$

Since $w_0 \in W$, it follows from (2.4) that

$$\begin{cases} -\Delta h + \frac{2ar_0^2}{L}h = -\frac{2ar_0^2}{L}w_0 & \text{ in }\Omega, \\ h = 0 & \text{ on }\partial\Omega \end{cases}$$

has a weak solution $h_0 \in H_0^1(\Omega, \mathbf{R})$. Let $s = h_0 + w_0$. Then we get

$$\int_{\Omega} (-\Delta w_0) v \, dx = \int_{\Omega} (-\Delta s + \frac{2ar_0^2}{L}s) v \, dx \text{ for all } v \in H_0^1(\Omega, \mathbf{R}).$$

64

We obtain that

$$T(v) = \delta \int_{\Omega} (-\Delta\phi) v \, dx + \int_{\Omega} (-\Delta w) v \, dx.$$

= $\delta \int_{\Omega} (-\Delta\phi) v \, dx + \int_{\Omega} (-\Delta s + \frac{2ar_0^2}{L}s) v \, dx.$
= $\delta \Phi(v) + (\Gamma_{(\alpha,\beta)}) (r_0,0)(s)(v)$

where $\Phi \in H_0^1(\Omega, \mathbf{R})$ is defined by $\Phi(v) = \langle \phi, v \rangle_{H_0^1(\Omega, \mathbf{R})} = \int_{\Omega} (-\Delta \phi) v \, dx$. Hence, $H^{-1}(\Omega, \mathbf{R}) = \operatorname{span}\{\Phi\} \oplus \mathcal{R}$ and thus $\operatorname{codim}(\mathcal{R}) = 1$.

In order to show (III), we fist note that for any $v \in H_0^1(\Omega, \mathbf{R})$, we get

$$\left(\Gamma_{(\alpha,\beta)}\right)_{u,r}(r_0,0)(\phi)(v) = \int_{\Omega} \frac{4ar_0}{L} \phi v \, dx.$$

This implies that $(\Gamma_{(\alpha,\beta)})_{u,r}(r_0,0)(\phi) \in \operatorname{span}\{\Phi\} = H^{-1}(\Omega,\mathbf{R}) \setminus \mathcal{R}.$

For each $(\alpha, \beta) \in \mathbf{R}^2$, it follows from Theorem 4.1 in [1] that r_0 is a bifurcation point for $\Gamma_{(\alpha,\beta)}$. This enables us to conclude the following theorem.

THEOREM 2.2. If $-\frac{2ar_0^2}{L}$ is a simple eigenvalue of $-\Delta$ with the Dirichlet boundary condition, then r_0 is a bifurcation point for J.

Proof. For $(\alpha, \beta) \in \mathbb{R}^2$, we know that r_0 is a bifurcation point for $\Gamma_{(\alpha,\beta)}$. Let $\{(r_n, u_n)\}$ be a sequence such that

$$\begin{cases} \Gamma_{(\alpha,\beta)}(r_n, u_n) = 0, ||u_n|| \neq 0, \\ (r_n, u_n) \to (r_0, 0) \text{ as } n \to \infty. \end{cases}$$

Then for any $\mathbf{v} = (v_1, v_2) \in H_0^1(\Omega, \mathbf{R}^2)$, we get

$$0 = \alpha \Gamma_{(\alpha,\beta)}(r_n, u_n)(v_1) + \beta \Gamma_{(\alpha,\beta)}(r_n, u_n)(v_2)$$

=
$$\int_{\Omega} \left(-\Delta u_n - \frac{2ar_n^2}{L} ((\alpha^2 + \beta^2)u_n^2 - 1)u_n \right) (\alpha v_1 + \beta v_2) dx$$

=
$$\int_{\Omega} \left(-\Delta \mathbf{u}_n - \frac{2ar_n^2}{L} (|\mathbf{u}_n|^2 - 1)\mathbf{u}_n \right) \cdot \mathbf{v} dx$$

=
$$J(r_n, \mathbf{u}_n)(\mathbf{v})$$

where $\mathbf{u}_n = (\alpha, \beta) u_n$. Hence (r_n, \mathbf{u}_n) be a sequence such that

$$\begin{cases} J(r_n, \mathbf{u}_n) = 0, \\ (r_n, \mathbf{u}_n) \to (r_0, 0) \text{ as } n \to \infty. \end{cases}$$

Therefore r_0 is bifurcation point for J.

COROLLARY 2.3. Suppose that there exists $r_0 \in \mathbf{R}$ such that $-\frac{2ar_0^2}{L}$ is simple eigenvalue of $-\Delta$ with the Dirichlet boundary condition. Then for r which is sufficiently close to r_0 , there exists a nontrivial solution $\hat{\mathbf{u}}_r \in H_0^1(\Omega_r, \mathbf{R}^2)$ for (2.2).

Proof. It follows from the previous theorem that for r which is sufficiently close to r_0 , there exists a nontrivial weak solution $\mathbf{u}_r \in H_0^1(\Omega, \mathbf{R}^2)$ that is

$$J(r, \mathbf{u}_r)(\mathbf{v}) = 0$$
 for any $\mathbf{v} \in H_0^1(\Omega, \mathbf{R}^2)$

Then we have

$$\begin{cases} -\Delta \mathbf{u}_r - \frac{2ar^2}{L} \mathbf{u}_r (|\mathbf{u}_r|^2 - 1) = 0 & \text{in } \Omega, \\ \mathbf{u}_r = 0 & \text{on } \partial\Omega. \end{cases}$$

For any $\hat{x} \in \Omega_r$, let $\hat{\mathbf{u}}_r(\hat{x}) = \mathbf{u}_r(\hat{x}/r)$. Then $\hat{\mathbf{u}}_r$ satisfies (2.2).

REMARK 2.4. In fact, the solution $\hat{\mathbf{u}}_r$ found in Corollary 2.3 satisfies

$$\hat{\mathbf{u}}_r = \pm \sqrt{\frac{r-r_0}{e}} (\alpha, \beta) \phi + O(r-r_0) \text{ for some } e > 0,$$

where $\alpha^2 + \beta^2 \approx \frac{(r+r_0)e}{r^2A}$, $A = \int_{\Omega} \phi^4 dx$. This can be proved by the Liapunov-Schmidt reduction [1, 4] and the arguments of chapter 5 in [1].

References

- A. AMBROSETTI AND G. PRODI, A primer of Nonlinear Analysis, Cambridge University Press, Cambridge, 1995.
- [2] P. BAUMAN, J. PARK AND D. PHILLIPS, Analysis of nematic liquid crystals with disclination lines. Arch. Ration. Mech. Anal., 205 (2012), no. 3, 795826.
- [3] L.C. EVANS, Partial Differential Equations, 2nd edition, AMS, 2010.
- [4] M. GOLUBITSKY AND D. G. SCHAFFER, Singularities and groups in bifurcation theory. Vol. I, Springer-Verlag, New York, 1984.
- [5] P. WANG AND M. J. MACLACHLAN, Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries, Philos. Trans. R. Soc. Lond. Ser. A., 376 (2018), no. 2112.

*

Department of Mathematics Chungnam National University Daejeon 34134, Republic of Korea *E-mail*: qorwnd0718@naver.com

**

Department of Mathematics Chungnam National University Daejeon 34134, Republic of Korea *E-mail*: jhpark2003@cnu.ac.kr