ON THE CRYSTALLOGRAPHIC GROUP OF $\operatorname{Sol}_{m, n}^{4}$

Won Sok Yoo

Abstract. The purpose of this paper is to determine the structure of the crystallographic group Π of the 4 -dimensional solvable Lie group $\mathrm{Sol}_{m, n}^{4}$ that the translation subgroup of $\Pi, \Gamma:=\Pi \cap \mathrm{Sol}_{m, n}^{4}$, is generated by the particular elements.

1. Introduction

Let X be a complete connected, simply connected Riemannian manifold, and let G be a group of isometries of X. A pair (X, G) is called a geometry in the sense of Thurston $[6,7]$ if G acts transitively on X and G contains a discrete subgroup Γ with the coset space $\Gamma \backslash X$ of finite volume. According to Filipkiewicz [3, 9], there are 20 types of geometries in dimension 4: $S^{4}, \mathbb{H}^{4}, P^{2}(\mathbb{C}), H^{2}(\mathbb{C}), S^{2} \times S^{2}, S^{2} \times \mathbb{R}^{2}, S^{2} \times$ $\mathbb{H}^{2}, \mathbb{R}^{4}, \mathbb{R}^{2} \times \mathbb{H}^{2}, \mathbb{H}^{2} \times \mathbb{H}^{2}, S^{3} \times \mathbb{R}, \mathbb{H}^{3} \times \mathbb{R}, \widetilde{\mathrm{PSL}}(2, \mathbb{R}) \times \mathbb{R}, \mathrm{Nil}^{3} \times \mathbb{R}, \mathrm{Sol}^{3} \times$ $\mathbb{R}, \mathrm{Nil}^{4}, \mathrm{Sol}_{m, n}^{4}, \mathrm{Sol}_{0}^{4}, \mathrm{Sol}_{1}^{4}$ and F^{4}.

Let G be a connected, simply connected solvable Lie group and let C be any maximal compact subgroup of $\operatorname{Aff}(G)$. A discrete cocompact subgroup Π of $G \rtimes C$ is called a crystallographic group of G. The coset space $\Pi \backslash G$ is an infra-solvmanifold of G, when Π is a Bieberbach group (i.e., a torsion-free crystallographic group) of G. The maximal compact subgroup C can be chosen so that $G \rtimes C$ is equal to Isom (G). Therefore, the Bieberbach groups of G are exactly the fundamental groups of compact infra-solvmanifolds of G. Consequently, a closed manifold has a (X, G)-geometry if and only if it is an infra-solvmanifold of G. The crystallographic groups of Sol^{3} and Sol_{1}^{4} are classified in [2] and [4], respectively. All the closed four-manifolds with $\operatorname{Sol}_{1}^{4}$-geometry were

[^0]studied in [8]. Utilizing the ideas in $[2,4,8]$, the aim of this paper is to determine the structure of the crystallographic group of the solvable Lie group $\mathrm{Sol}_{m, n}^{4}$.

This paper is organized as follows. In Section 2, we show that a compact subgroup of the group of automorphisms of the Lie group $\mathrm{Sol}_{\lambda}^{4}$ has at most 8 elements. There are an infinite but countable number of the Lie groups $\mathrm{Sol}_{\lambda}^{4}$ that admit a lattice. Such Lie groups are denoted by $\mathrm{Sol}_{m, n}^{4}$. In Section 3, we review a family of Lie groups $\operatorname{Sol}_{m, n}^{4}$. In Section 4, we study the structure of the crystallographic group Π of $\mathrm{Sol}_{m, n}^{4}$ that the translation subgroup of $\Pi, \Gamma:=\Pi \cap \operatorname{Sol}_{m, n}^{4}$, is generated by the particular elements.

2. The Lie group $\mathrm{Sol}_{\lambda}^{4}$ and its automorphism group

The Lie group $\mathrm{Sol}_{\lambda}^{4}$ is a 4 -dimensional connected, simply connected and unimodular solvable Lie group $\mathbb{R}^{3} \rtimes_{\varphi} \mathbb{R}$ of type (R) where

$$
\varphi(s)=\left[\begin{array}{ccc}
e^{\lambda s} & 0 & 0 \\
0 & e^{s} & 0 \\
0 & 0 & e^{-(1+\lambda) s}
\end{array}\right] \quad(\lambda>1) .
$$

This can be embedded in $\mathrm{Aff}(4)$ as

$$
\operatorname{Sol}_{\lambda}^{4}=\left\{\left[\begin{array}{ccc}
\varphi(s) & 0 & \mathbf{x} \\
0 & 1 & s \\
0 & 0 & 1
\end{array}\right]\right\} \subset \operatorname{Aff}(4) \subset \operatorname{GL}(5, \mathbb{R}),
$$

where $\mathbf{x} \in \mathbb{R}^{3}$ is a column vector. The Lie algebra $\operatorname{sol}_{\lambda}^{4}$ of $\operatorname{Sol}_{\lambda}^{4}$ is

$$
\mathfrak{s o l}_{\lambda}^{4}=\left\{\left[\begin{array}{ccc}
\tau(s) & 0 & \mathbf{a} \\
0 & 0 & s \\
0 & 0 & 0
\end{array}\right]\right\}
$$

where

$$
\tau(s)=\log \varphi(s)=\left[\begin{array}{ccc}
\lambda s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & -(1+\lambda) s
\end{array}\right]
$$

Now let us first find the group of automorphisms $\operatorname{Aut}\left(\mathrm{Sol}_{\lambda}^{4}\right)$ of $\mathrm{Sol}_{\lambda}^{4}$. Because $\operatorname{Sol}_{\lambda}^{4}$ is simply connected, it suffices to find the group of Lie algebra automorphisms of the Lie algebra $\mathfrak{s o l}_{\lambda}^{4}$. For this purpose, we
choose a linear basis $\left\{\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}, \mathbf{F}\right\}$ of $\mathfrak{s o l}_{\lambda}^{4}$ as follows:

$$
\mathbf{E}_{i}=\left[\begin{array}{ccc}
\tau(0) & 0 & \mathbf{e}_{i} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \mathbf{F}=\left[\begin{array}{ccc}
\tau(1) & 0 & \mathbf{0} \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is the set of standard basis vectors of \mathbb{R}^{3}. Then the nontrivial Lie brackets between them are

$$
\begin{equation*}
\left[\mathbf{F}, \mathbf{E}_{1}\right]=\lambda \mathbf{E}_{1},\left[\mathbf{F}, \mathbf{E}_{2}\right]=\mathbf{E}_{2},\left[\mathbf{F}, \mathbf{E}_{3}\right]=-(1+\lambda) \mathbf{E}_{3} \tag{2-1}
\end{equation*}
$$

A Lie algebra automorphism of $\mathfrak{s o l}_{\lambda}^{4}$ is a nonsingular linear transformation of the linear space $\mathfrak{s o l}_{\lambda}^{4}$ preserving the nontrivial Lie brackets (2-1) together with all trivial Lie brackets. It is now easy to observe that:

Proposition 2.1. The Lie group $\operatorname{Aut}\left(\mathfrak{s o l}_{\lambda}^{4}\right)$ is, with respect to the linear basis $\left\{\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}, \mathbf{F}\right\}$, the following matrix group

$$
\left\{\left.\left[\begin{array}{cccc}
a & 0 & 0 & * \\
0 & b & 0 & * \\
0 & 0 & c & * \\
0 & 0 & 0 & 1
\end{array}\right] \right\rvert\, a b c \neq 0\right\} \cong \mathbb{R}^{3} \rtimes \mathrm{GD}(3)
$$

where $\mathrm{GD}(3)$ is the group of all invertible 3×3-diagonal matrices and it acts on \mathbb{R}^{3} by matrix multiplication.

From Proposition 2.1, it is immediate that a maximal compact subgroup of $\operatorname{Aut}\left(\mathfrak{s o l}_{\lambda}^{4}\right)$ is

$$
\mathrm{O}(1) \times \mathrm{O}(1) \times \mathrm{O}(1)=\left\{\left[\begin{array}{rrr}
\pm 1 & 0 & 0 \\
0 & \pm 1 & 0 \\
0 & 0 & \pm 1
\end{array}\right]\right\} \cong\left(\mathbb{Z}_{2}\right)^{3}
$$

which is a maximal compact subgroup of $\mathrm{GD}(3)$.
Remark that the Lie group $\operatorname{Sol}_{\lambda}^{4}$ is of type (R) and hence is of type (E), that is, the exponential map exp : $\mathrm{Sol}_{\lambda}^{4} \rightarrow \mathfrak{s o l}_{\lambda}^{4}$ is a diffeomorphism. Using this diffeomorphism, we can observe that $\left[\begin{array}{cccc}a & 0 & 0 & p \\ 0 & b & 0 & q \\ 0 & 0 & c & r \\ 0 & 0 & 0 & 1\end{array}\right] \in \operatorname{Aut}\left(\mathfrak{s o l}_{\lambda}^{4}\right)$
is an automorphism of $\mathrm{Sol}_{\lambda}^{4}$ given by

$$
\left[\begin{array}{ccccc}
e^{\lambda s} & 0 & 0 & 0 & x \\
0 & e^{s} & 0 & 0 & y \\
0 & 0 & e^{-(1+\lambda) s} & 0 & z \\
0 & 0 & 0 & 1 & s \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \mapsto\left[\begin{array}{ccccc}
e^{\lambda s} & 0 & 0 & 0 & a x+s p \frac{e^{\lambda s}-1}{s{ }^{\lambda s}} \\
0 & e^{s} & 0 & 0 & b y+s q \frac{e^{s}-1}{s} \\
0 & 0 & e^{-(1+\lambda) s} & 0 & c z+s r \frac{e^{-(1+\lambda) s}-1}{-(1+\lambda) s} \\
0 & 0 & 0 & 1 & s \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

In particular, $\operatorname{GD}(3)(p=q=r=0)$ acts on $\mathrm{Sol}_{\lambda}^{4}=\mathbb{R}^{3} \rtimes_{\varphi} \mathbb{R}$ as matrix multiplication on its nilradical \mathbb{R}^{3}. Consequently,
$(2-2) \quad \operatorname{Sol}_{\lambda}^{4} \rtimes \mathrm{GD}(3)=\left(\mathbb{R}^{3} \rtimes_{\varphi} \mathbb{R}\right) \rtimes \mathrm{GD}(3)=\mathbb{R}^{3} \rtimes_{\varphi^{\prime}}(\mathbb{R} \times \mathrm{GD}(3))$
where $\varphi^{\prime}(s, X)=\varphi(s) \cdot X=X \cdot \varphi(s)$.

3. The Lie group $\mathrm{Sol}_{m, n}^{4}$

In this section, we will briefly review a family of Lie groups $\operatorname{Sol}_{m, n}^{4}$. A good reference is [5] or [9]. Let Γ be a lattice (i.e., a discrete cocompact subgroup) of $\operatorname{Sol}_{\lambda}^{4}=\mathbb{R}^{3} \rtimes_{\varphi} \mathbb{R}$. Then $\Gamma \cap \mathbb{R}^{3}$ is a lattice of \mathbb{R}^{3} and $\Gamma /\left(\Gamma \cap \mathbb{R}^{3}\right)$ is a lattice of $\operatorname{Sol}_{\lambda}^{4} / \mathbb{R}^{3}=\mathbb{R}$, so that $\Gamma \cap \mathbb{R}^{3} \cong \mathbb{Z}^{3}$ and $\Gamma /\left(\Gamma \cap \mathbb{R}^{3}\right) \cong \mathbb{Z}$, and the following diagram of short exact sequences is commutative

The rightmost map is injective. We may assume this injective map is an inclusion $\mathbb{Z} \subset \mathbb{R}$. Choose a generator $s>0$ of the group \mathbb{Z}. Then \mathbb{Z}^{3} is a $\varphi(s)$-invariant lattice of \mathbb{R}^{3}, namely, $\varphi(s)$ can be regarded as an automorphism on \mathbb{Z}^{3}. Choose a basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ of \mathbb{Z}^{3}. Then we must have that

$$
\begin{equation*}
\varphi(s)\left(\mathbf{x}_{i}\right)=\ell_{1 i} \mathbf{x}_{1}+\ell_{2 i} \mathbf{x}_{2}+\ell_{3 i} \mathbf{x}_{3}, \quad(i=1,2,3) \tag{3-1}
\end{equation*}
$$

for some integers $\ell_{i j}$. Thus the lattice Γ is a subgroup of $\mathrm{Sol}_{\lambda}^{4}$ generated by the following elements

$$
\mathbf{x}_{1}=\left(\mathbf{x}_{1}, 0\right), \mathbf{x}_{2}=\left(\mathbf{x}_{2}, 0\right), \mathbf{x}_{3}=\left(\mathbf{x}_{3}, 0\right), s=(\mathbf{0}, s)
$$

of $\mathrm{Sol}_{\lambda}^{4}=\mathbb{R}^{3} \rtimes_{\varphi} \mathbb{R}$. We shall denote such a lattice by

$$
\begin{equation*}
\Gamma=\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, s \mid\left[\mathbf{x}_{i}, \mathbf{x}_{j}\right]=1, \varphi(s)\left(\mathbf{x}_{i}\right)=\ell_{1 i} \mathbf{x}_{1}+\ell_{2 i} \mathbf{x}_{2}+\ell_{3 i} \mathbf{x}_{3}\right\rangle \tag{3-2}
\end{equation*}
$$

Let

$$
A=\left[\begin{array}{lll}
\ell_{11} & \ell_{12} & \ell_{13} \\
\ell_{21} & \ell_{22} & \ell_{23} \\
\ell_{31} & \ell_{32} & \ell_{33}
\end{array}\right]
$$

Then $\Gamma \cong \mathbb{Z}^{3} \rtimes_{A} \mathbb{Z}$.
Now we form the matrix P with columns $\mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{3}. Then (3-1) is equivalent to

$$
P A P^{-1}=\varphi(s)=\left[\begin{array}{ccc}
e^{\lambda s} & 0 & 0 \tag{3-3}\\
0 & e^{s} & 0 \\
0 & 0 & e^{-(1+\lambda) s}
\end{array}\right]
$$

This implies that $A \in \mathrm{SL}(3, \mathbb{Z})$ and the columns of P^{-1} are eigenvectors of A with corresponding eigenvalues $e^{\lambda s}, e^{s}$ and $e^{-(1+\lambda) s}$, respectively.

For another basis $\left\{\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}, \mathbf{x}_{3}^{\prime}\right\}$ of \mathbb{Z}^{3}, we let P^{\prime} be the matrix with columns $\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}^{\prime}$ and \mathbf{x}_{3}^{\prime}. Then we have that

$$
\varphi(s)\left(\mathbf{x}_{i}^{\prime}\right)=\ell_{1 i}^{\prime} \mathbf{x}_{1}^{\prime}+\ell_{2 i}^{\prime} \mathbf{x}_{2}^{\prime}+\ell_{3 i}^{\prime} \mathbf{x}_{3}^{\prime}, \quad(i=1,2,3)
$$

for some integers $\ell_{i j}^{\prime}$. If

$$
A^{\prime}=\left[\begin{array}{lll}
\ell_{11}^{\prime} & \ell_{12}^{\prime} & \ell_{13}^{\prime} \\
\ell_{21}^{\prime} & \ell_{22}^{\prime} & \ell_{23}^{\prime} \\
\ell_{31}^{\prime} & \ell_{32}^{\prime} & \ell_{33}^{\prime}
\end{array}\right]
$$

then we have

$$
\varphi(s)=P^{\prime} A^{\prime} P^{\prime-1}
$$

Therefore, $A^{\prime}=P^{\prime-1} P A P^{-1} P^{\prime}$, i.e., A and A^{\prime} are conjugate by an element of $\mathrm{GL}(3, \mathbb{R})$. Clearly, $\mathbb{Z}^{3} \rtimes_{A} \mathbb{Z} \cong \mathbb{Z}^{3} \rtimes_{A^{\prime}} \mathbb{Z}$.

Let

$$
\chi_{A}(x)=x^{3}-m x^{2}+n x-1
$$

be the characteristic polynomial of $A($ so $m, n \in \mathbb{Z})$. Since A and $\varphi(s)$ are conjugate, we have

$$
\begin{aligned}
m & =e^{\lambda s}+e^{s}+e^{-(1+\lambda) s}=\operatorname{tr}(A) \\
n & =e^{-\lambda s}+e^{-s}+e^{(1+\lambda) s}=\operatorname{tr}\left(A^{-1}\right)
\end{aligned}
$$

Note that $m>3$. [It can be seen that the function $f(x)=e^{\lambda x}+e^{x}+$ $e^{-(1+\lambda) x}$ has the global minimum value 3 at $x=0$.] Similarly, $n>3$. We call such $\operatorname{Sol}_{\lambda}^{4}$ as $\mathrm{Sol}_{m, n}^{4}$.

By choosing $-s$ as another generator of the group $\mathbb{Z}(\subset \mathbb{R})$, we see that $\operatorname{Sol}_{n, m}^{4} \cong \operatorname{Sol}_{m, n}^{4}$. Note also that e^{s} cannot be 1 , that is, 1 cannot be a root of $\chi_{A}(x)$, which happens when and only when $m=n$. Remark
that $\operatorname{Sol}_{m, m}^{4} \cong \mathrm{Sol}^{3} \times \mathbb{R}$. Thus in what follows we shall assume that $m>n>3$.

Since $m>n>3$, we have $m^{2}-3 n>0$. So, the characteristic polynomial $\chi_{A}(x)$ of A has two positive critical values

$$
x=\frac{1}{3}\left(m \pm \sqrt{m^{2}-3 n}\right) .
$$

Then $\chi_{A}(x)$ has 3 distinct positive real roots if and only if

$$
\begin{align*}
& m>n>3 \\
& \chi_{A}\left(\frac{1}{3}\left(m-\sqrt{m^{2}-3 n}\right)\right)>0 \tag{3-4}\\
& \chi_{A}\left(\frac{1}{3}\left(m+\sqrt{m^{2}-3 n}\right)\right)<0
\end{align*}
$$

Consequently, if the group $\mathrm{Sol}_{\lambda}^{4}$ has a lattice, then there exists a pair of integers (m, n) satisfying the conditions (3-4), or equivalently, lying in the shaded region.

Conversely, suppose (m, n) is a pair of integers satisfying the conditions (3-4). Then the equation $x^{3}-m x^{2}+n x-1=0$ has 3 distinct positive real roots, say $\alpha_{1}>\alpha_{2}>\alpha_{3}>0$. This equation has the companion matrix

$$
A_{m, n}:=\left[\begin{array}{rrr}
0 & 0 & 1 \\
1 & 0 & -n \\
0 & 1 & m
\end{array}\right]
$$

Let P be the Vandermonde matrix corresponding $\alpha_{1}, \alpha_{2}, \alpha_{3}$:

$$
P=\left[\begin{array}{lll}
1 & \alpha_{1} & \alpha_{1}^{2} \\
1 & \alpha_{2} & \alpha_{2}^{2} \\
1 & \alpha_{3} & \alpha_{3}^{2}
\end{array}\right]
$$

Then

$$
P\left[\begin{array}{rrr}
0 & 0 & 1 \\
1 & 0 & -n \\
0 & 1 & m
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{1} & 0 & 0 \\
0 & \alpha_{2} & 0 \\
0 & 0 & \alpha_{3}
\end{array}\right] P .
$$

Moreover,

$$
\begin{aligned}
& \alpha_{1} \alpha_{2} \alpha_{3}=1 \\
& \alpha_{1}+\alpha_{2}+\alpha_{3}=m \\
& \alpha_{1}^{-1}+\alpha_{2}^{-1}+\alpha_{2}^{-1}=\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1}+\alpha_{1} \alpha_{2}=n
\end{aligned}
$$

Consequently, if $A \in \mathrm{SL}(3, \mathbb{Z})$ has characteristic polynomial $\chi_{A}(x)=$ $x^{3}-m x^{2}+n x-1$ then it is conjugate to $A_{m, n}$.

Let

$$
\lambda=\frac{\ln \alpha_{1}}{\ln \alpha_{2}}, s=\ln \alpha_{2}
$$

A direct computation shows that $Q=P^{-1}$ is, up to a nonzero constant,

$$
\left[\begin{array}{ccc}
-\alpha_{2} \alpha_{3}\left(\alpha_{2}-\alpha_{3}\right) & -\alpha_{3} \alpha_{1}\left(\alpha_{3}-\alpha_{1}\right) & -\alpha_{1} \alpha_{2}\left(\alpha_{1}-\alpha_{2}\right) \\
\left(\alpha_{2}+\alpha_{3}\right)\left(\alpha_{2}-\alpha_{3}\right) & \left(\alpha_{3}+\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right) & \left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{1}-\alpha_{2}\right) \\
-\left(\alpha_{2}-\alpha_{3}\right) & -\left(\alpha_{3}-\alpha_{1}\right) & -\left(\alpha_{1}-\alpha_{2}\right)
\end{array}\right]
$$

Hence the vectors

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
\alpha_{2} \alpha_{3} \tag{3-5}\\
-\left(\alpha_{2}+\alpha_{3}\right) \\
1
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
\alpha_{3} \alpha_{1} \\
-\left(\alpha_{3}+\alpha_{1}\right) \\
1
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{c}
\alpha_{1} \alpha_{2} \\
-\left(\alpha_{1}+\alpha_{2}\right) \\
1
\end{array}\right]
$$

are eigenvectors of $A_{m, n}$ with eigenvalues $\alpha_{1}=e^{\lambda s}, \alpha_{2}=e^{s}$ and $\alpha_{3}=$ $e^{-(1+\lambda) s}$, respectively. This proves that the abstract group $\mathbb{Z}^{3} \rtimes_{A_{m, n}} \mathbb{Z}$ is isomorphic to the lattice of $\operatorname{Sol}_{\lambda}^{4}=\operatorname{Sol}_{m, n}^{4}$ generated by $\left(\mathbf{x}_{1}, 0\right),\left(\mathbf{x}_{2}, 0\right),\left(\mathbf{x}_{3}, 0\right)$ and $(\mathbf{0}, s)$, see $(3-2)$.

4. The structure of crystallographic group of $\operatorname{Sol}_{m, n}^{4}$

We recall that a closed 4-dimensional manifold M has $\operatorname{Sol}_{m, n}^{4}$-geometry if and only if it is an infra-solvmanifold of $\operatorname{Sol}_{m, n}^{4}, M=\Pi \backslash \operatorname{Sol}_{m, n}^{4}$. Therefore, Π is a torsion-free discrete cocompact subgroup of $\operatorname{Sol}_{m, n}^{4} \rtimes K \subset$ $\operatorname{Aff}\left(\operatorname{Sol}_{m, n}^{4}\right)$ where $K=\mathrm{O}(1)^{3}$ is a maximal compact subgroup of the group of automorphisms $\operatorname{Aut}\left(\mathrm{Sol}_{m, n}^{4}\right)$ of $\operatorname{Sol}_{m, n}^{4}$.

Let Π be a crystallographic group of $\mathrm{Sol}_{m, n}^{4}$. Since the Bieberbach theorems generalize to $\operatorname{Sol}_{m, n}^{4}[1]$, the translation subgroup of $\Pi, \Gamma:=$ $\Pi \cap \operatorname{Sol}_{m, n}^{4}$, is of finite index in Π, and is a lattice of $\operatorname{Sol}_{m, n}^{4}$. The maximal
compact subgroup K is very small, has only 8 elements. Therefore, all crystallographic groups of $\mathrm{Sol}_{m, n}^{4}$ are extensions of a lattice by a subgroup Φ of the finite group K.

Given a pair of integers (m, n) satisfying the conditions (3-4), we denote by $\alpha_{1}>\alpha_{2}>\alpha_{3}>0$ the 3 distinct positive real roots of the associated equation $x^{3}-m x^{2}+n x-1=0$.

The purpose of this paper is to determine the structure of the crystallographic group Π of which the translation subgroup Γ is generated by $\left\{\left(\mathbf{x}_{1}, 0\right),\left(\mathbf{x}_{2}, 0\right),\left(\mathbf{x}_{3}, 0\right),(\mathbf{0}, s)\right\}$, where $s=\ln \alpha_{2}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ are given as in (3-5). With $\Phi:=\Pi / \Gamma \subset K$ and $\mathbb{Z}_{\Phi}:=\Pi /\left(\Gamma \cap \mathbb{R}^{3}\right)$, we obtain the commutative diagram below with exact rows and columns

where $\mathbb{Z}^{3}=\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\rangle$ and $\mathbb{Z}=\langle s\rangle$.
Remark also that $\Pi \subset \operatorname{Sol}_{m, n}^{4} \rtimes K=\mathbb{R}^{3} \rtimes_{\varphi^{\prime}}(\mathbb{R} \times K)$ and hence $\mathbb{Z}_{\Phi} \subset \mathbb{R} \times K$. In particular, \mathbb{Z}_{Φ} is abelian. Consequently, it makes easy to determine $\mathbb{Z}_{\Phi} \subset \mathbb{R} \times K$, which is an extension of $\mathbb{Z}=\langle s\rangle$ by Φ.

For any non-trivial element X of Φ, there exists a $t \in \mathbb{R}$ such that $(t, X) \in \mathbb{Z}_{\Phi}$. Since $(t, X)^{2}=\left(2 t, X^{2}\right)=(2 t, I) \in\langle s\rangle$, we may assume that $t=0$ or $t=\frac{s}{2}$. Hence the subgroup $\langle(s, I),(t, X)\rangle$ is either $\langle(s, I),(0, X)\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2}$ or $\left\langle\left(\frac{s}{2}, X\right)\right\rangle \cong \mathbb{Z}$.

Let $X, Y \in \Phi$ generate a subgroup of Φ isomorphic to \mathbb{Z}_{2}^{2}. Choose lifts $(t, X),(u, Y) \in \mathbb{Z}_{\Phi}$ of X, Y where t, u are 0 or $\frac{s}{2}$. Therefore, the
subgroup $\langle(s, I),(t, X),(u, Y)\rangle$ of \mathbb{Z}_{Φ} is one of the following:

$$
\begin{aligned}
& \langle(s, I),(0, X),(0, Y)\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2}^{2}, \\
& \left\langle\left(\frac{s}{2}, X\right),(0, Y)\right\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2}, \\
& \left\langle(0, X),\left(\frac{s}{2}, Y\right)\right\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2}, \\
& \left\langle\left(\frac{s}{2}, X\right),\left(\frac{s}{2}, Y\right)\right\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2} .
\end{aligned}
$$

Let $\Phi=K$ with generators X, Y, Z. Choose lifts $(t, X),(u, Y),(v, Z) \in$ \mathbb{Z}_{Φ} of X, Y, Z where t, u and v are 0 or $\frac{s}{2}$. Then it can be seen easily that the subgroup $\langle(s, I),(t, X),(u, Y),(v, Z)\rangle$ of \mathbb{Z}_{Φ} is one of the following:

$$
\begin{aligned}
& \langle(s, I),(0, X),(0, Y),(0, Z)\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2}^{3}, \\
& \left\langle\left(\frac{s}{2}, X\right),(0, Y),(0, Z)\right\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2}^{2}, \\
& \left\langle(0, X),\left(\frac{s}{2}, Y\right),(0, Z)\right\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2}^{2}, \\
& \left\langle(0, X),(0, Y),\left(\frac{s}{2}, Z\right)\right\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2}^{2}, \\
& \left\langle(0, X),\left(\frac{s}{2}, Y\right),\left(\frac{s}{2}, Z\right)\right\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2}^{2}, \\
& \left\langle\left(\frac{s}{2}, X\right),(0, Y),\left(\frac{s}{2}, Z\right)\right\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2}^{2}, \\
& \left\langle\left(\frac{s}{2}, X\right),\left(\frac{s}{2}, Y\right),(0, Z)\right\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2}^{2}, \\
& \left\langle\left(\frac{s}{2}, X\right),\left(\frac{s}{2}, Y\right),\left(\frac{s}{2}, Z\right)\right\rangle \cong \mathbb{Z} \times \mathbb{Z}_{2}^{2} .
\end{aligned}
$$

In conclusion, we can see that \mathbb{Z}_{Φ} is isomorphic to one of the following

$$
\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}_{2}, \mathbb{Z} \times \mathbb{Z}_{2}^{2}, \mathbb{Z} \times \mathbb{Z}_{2}^{3}
$$

Moreover, if Φ has 2 or more generators, then $(0, X) \in \mathbb{Z}_{\Phi}$ for some nontrivial element X of Φ.

We know all the subgroups Φ of $K \subset \operatorname{Aut}\left(\operatorname{Sol}_{m, n}^{4}\right)$. The group $K=$ $\mathrm{O}(1)^{3}$ is generated by

$$
X=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], Y=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right], Z=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] .
$$

Thus the nontrivial subgroups Φ of $K=\{ \pm I, \pm X, \pm Y, \pm Z\}$ are:

Φ	generator(s)
\mathbb{Z}_{2}	$\langle X\rangle,\langle Y\rangle,\langle Z\rangle,\langle-X\rangle,\langle-Y\rangle,\langle-Z\rangle,\langle-I\rangle$
\mathbb{Z}_{2}^{2}	$\langle X,-X\rangle,\langle X, Y\rangle,\langle X, Z\rangle,\langle Y,-Y\rangle,\langle Y, Z\rangle,\langle Z,-Z\rangle,\langle-X,-Z\rangle$
\mathbb{Z}_{2}^{3}	$\langle X, Y, Z\rangle$

References

[1] K. Dekimpe, K. B. Lee and F. Raymond, Bieberbach theorems for solvable Lie groups, Asian J. Math., 5 (2001), 499-508.
[2] K. Y. Ha and J. B. Lee, Crystallographic groups of Sol, Math. Nachr., 286 (2013), 1614-1667.
[3] J. A. Hillman, Four-manifolds , Geometries and Knots, Geometry \& Topology Monographs, 5, Geometry \& Topology Publications, Coventry, 2002.
[4] K. B. Lee and S. Thuong, Infra-solvmanifolds of Sol_{1}^{4}, J. Korean Math. Soc., 52 (2015), 1209-1251.
[5] J. B. Lee, K. B. Lee, J. Shin and S. Yi, Unimodular groups of type $\mathbb{R}^{3} \rtimes \mathbb{R}$, J. Korean Math. Soc., 44 (2007), 1121-1137.
[6] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc., 15 (1983), 401-487.
[7] W. P. Thurston, Three-dimensional Geometry and Topology, 1, Princeton University Press, Princeton, NJ, 1997.
[8] S. V. Thuong, Classification of closed manifolds with Sol $_{1}{ }^{4}$-geometry, Geom. Dedicata., 199 (2019), 373-397.
[9] C. T. C. Wall, Geometric structures on compact complex analytic surfaces, Topology, 25 (1986), 119-153.

Department of Applied Mathematics
Kumoh National Institute of Technology
Kumi 39177, Republic of Korea
E-mail: wsyoo@kumoh.ac.kr

[^0]: Received December 07, 2020; Accepted December 28, 2020.
 2010 Mathematics Subject Classification: 57S25, 22E25.
 Key words and phrases: Bieberbach group, crystallographic group, infrasolvmanifold, $\mathrm{Sol}_{m, n}^{4}$.

 This research was supported by Kumoh National Institute of Technology (202001960001).

