DOI QR코드

DOI QR Code

A GENERALIZED APPROACH OF FRACTIONAL FOURIER TRANSFORM TO STABILITY OF FRACTIONAL DIFFERENTIAL EQUATION

  • 투고 : 2021.08.09
  • 심사 : 2021.11.30
  • 발행 : 2021.12.30

초록

This research article deals with the Mittag-Leffler-Hyers-Ulam stability of linear and impulsive fractional order differential equation which involves the Caputo derivative. The application of the generalized fractional Fourier transform method and fixed point theorem, evaluates the existence, uniqueness and stability of solution that are acquired for the proposed non-linear problems on Lizorkin space. Finally, examples are introduced to validate the outcomes of main result.

키워드

참고문헌

  1. A.A. Kilbas, Y. Luchko, H. Martinez and J.J. Trujillo, Fractional Fourier transform in the framework of fractional calculus operator, Integral Transforms and Special Functions, 21 (2010), 779-795. https://doi.org/10.1080/10652461003676099
  2. H. Dai, Z. Zheng and W. Wang, A new fractional wavelet transform, Communications in Non-linear Science Numerical Simulation, 44 (2017), 19-36. https://doi.org/10.1016/j.cnsns.2016.06.034
  3. G.D. Medina, N.R. Ojeda, J.H. Pereira and L.G. Romero, Fractional Laplace transform and fractional calculus, International Mathematical Forum, 12 (2017), 991-1000. https://doi.org/10.12988/imf.2017.71194
  4. A. Kilicman and M. Omran, Note on fractional Mellin transform and applications, SpringerPlus, 5(1) (2016), 1-8. https://doi.org/10.1186/s40064-015-1659-2
  5. A. Prasad and V.K. Singh, The fractional Hankel transform of certain tempered distributions and pseudo-differential distributions, Annali Dell'universita'di Ferrara, 59(1) (2013), 141-158. https://doi.org/10.1007/s11565-012-0169-1
  6. N. Wiener, Hermition polynomial and Fourier analysis, Journal of Mathematics and Physics, 8 (1929), 70-73. https://doi.org/10.1002/sapm19298170
  7. H. Qusuay, H. Alqifiary and S.M. Jung, Laplace transform and generalized Hyers-Ulam stability of linear differential operators, Electronic Journal of Differential Equations, 80 (2014), 1-11.
  8. R. Murali, A. Ponmana Selvan and C. Park, Ulam stability of linear differential equation using Fourier transform method, AIMS Mathematics, 5 (2020), 766-780. https://doi.org/10.3934/math.2020052
  9. B. Unyong, A. Mohanapriya, A. Ganesh, G. Rajchakit, V. Govindan, N. Gunasekaran and C.P. Lim, Fractional Fourier transform and stability of fractional differential equation on Lizorkin space, Advance in Difference Equation, 2020 (2020), no. 578.
  10. J. Wang and Y. Zhou, Mittag-Leffler-Ulam stability of fractional evolution equations, Applied Mathematics Letters, 25(4) (2012), 723-728. https://doi.org/10.1016/j.aml.2011.10.009
  11. J. Wang and Y. Zhang, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization, 63(8) (2014), 1181-1190. https://doi.org/10.1080/02331934.2014.906597
  12. J. Wang and X. Li, E𝛼-Ulam type stability of fractional order ordinary differential equations, Journal of Applied Mathematics and Computing, 45 (2014), 449-459. https://doi.org/10.1007/s12190-013-0731-8
  13. K. Liu, J. Wang, Y. Zhou and D.O. Regan, Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel, Chaos, Solitons and Fractals, 132 (2020), 109-534.
  14. A. Zada, J. Alzabut, H. Waheed and L. Popa, Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary condition, Advance in Difference Equation, 2020(2020), no. 64.
  15. S.O. Shah, A. Zada, Existence, uniqueness and stability of solution to mixed integral dynamic system with instantaneous and non instantaneous impulses on time scale, Applied Mathematics and Computation, 359 (2019), 202-213. https://doi.org/10.1016/j.amc.2019.04.044
  16. J. Wang, A. Zada, W. Ali, Ulam's type stability of first-order impulsive differential equations with variable in quasi-Banach spaces, International Journal of Nonlinear Science and Numerical Simulation, 19(5) (2018), 553-560. https://doi.org/10.1515/ijnsns-2017-0245
  17. R. Agarwal, S. Hristova and D.O. Regan, Basic concepts of Riemann-Liouville fractional differential equation with non-instantaneous impulses, Symmetry, 11(5) (2019) 614. https://doi.org/10.3390/sym11050614
  18. R. Almeida, A.B. Malinowska and M.T. Monteiro, Fractional differential equations with a Caputo derivative with respect to kernel function and their applications, Mathematical Methods in the Applied Sciences, 41 (2018), 336-352. https://doi.org/10.1002/mma.4617
  19. A.K. Shukla and J.C. Prajapati, On a generalization of Mittag-Leffler function and its properties, Journal of Mathematical Analysis and Applications, 336 (2007), 797-811. https://doi.org/10.1016/j.jmaa.2007.03.018
  20. K. Diethelm, An algorithm for the numerical solution of differential equation of fractional order, Electronic Transactions on Numerical Analysis, 5 (1997), 1-6.