참고문헌
- A.A. Kilbas, Y. Luchko, H. Martinez and J.J. Trujillo, Fractional Fourier transform in the framework of fractional calculus operator, Integral Transforms and Special Functions, 21 (2010), 779-795. https://doi.org/10.1080/10652461003676099
- H. Dai, Z. Zheng and W. Wang, A new fractional wavelet transform, Communications in Non-linear Science Numerical Simulation, 44 (2017), 19-36. https://doi.org/10.1016/j.cnsns.2016.06.034
- G.D. Medina, N.R. Ojeda, J.H. Pereira and L.G. Romero, Fractional Laplace transform and fractional calculus, International Mathematical Forum, 12 (2017), 991-1000. https://doi.org/10.12988/imf.2017.71194
- A. Kilicman and M. Omran, Note on fractional Mellin transform and applications, SpringerPlus, 5(1) (2016), 1-8. https://doi.org/10.1186/s40064-015-1659-2
- A. Prasad and V.K. Singh, The fractional Hankel transform of certain tempered distributions and pseudo-differential distributions, Annali Dell'universita'di Ferrara, 59(1) (2013), 141-158. https://doi.org/10.1007/s11565-012-0169-1
- N. Wiener, Hermition polynomial and Fourier analysis, Journal of Mathematics and Physics, 8 (1929), 70-73. https://doi.org/10.1002/sapm19298170
- H. Qusuay, H. Alqifiary and S.M. Jung, Laplace transform and generalized Hyers-Ulam stability of linear differential operators, Electronic Journal of Differential Equations, 80 (2014), 1-11.
- R. Murali, A. Ponmana Selvan and C. Park, Ulam stability of linear differential equation using Fourier transform method, AIMS Mathematics, 5 (2020), 766-780. https://doi.org/10.3934/math.2020052
- B. Unyong, A. Mohanapriya, A. Ganesh, G. Rajchakit, V. Govindan, N. Gunasekaran and C.P. Lim, Fractional Fourier transform and stability of fractional differential equation on Lizorkin space, Advance in Difference Equation, 2020 (2020), no. 578.
- J. Wang and Y. Zhou, Mittag-Leffler-Ulam stability of fractional evolution equations, Applied Mathematics Letters, 25(4) (2012), 723-728. https://doi.org/10.1016/j.aml.2011.10.009
- J. Wang and Y. Zhang, Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization, 63(8) (2014), 1181-1190. https://doi.org/10.1080/02331934.2014.906597
- J. Wang and X. Li, E𝛼-Ulam type stability of fractional order ordinary differential equations, Journal of Applied Mathematics and Computing, 45 (2014), 449-459. https://doi.org/10.1007/s12190-013-0731-8
- K. Liu, J. Wang, Y. Zhou and D.O. Regan, Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel, Chaos, Solitons and Fractals, 132 (2020), 109-534.
- A. Zada, J. Alzabut, H. Waheed and L. Popa, Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary condition, Advance in Difference Equation, 2020(2020), no. 64.
- S.O. Shah, A. Zada, Existence, uniqueness and stability of solution to mixed integral dynamic system with instantaneous and non instantaneous impulses on time scale, Applied Mathematics and Computation, 359 (2019), 202-213. https://doi.org/10.1016/j.amc.2019.04.044
- J. Wang, A. Zada, W. Ali, Ulam's type stability of first-order impulsive differential equations with variable in quasi-Banach spaces, International Journal of Nonlinear Science and Numerical Simulation, 19(5) (2018), 553-560. https://doi.org/10.1515/ijnsns-2017-0245
- R. Agarwal, S. Hristova and D.O. Regan, Basic concepts of Riemann-Liouville fractional differential equation with non-instantaneous impulses, Symmetry, 11(5) (2019) 614. https://doi.org/10.3390/sym11050614
- R. Almeida, A.B. Malinowska and M.T. Monteiro, Fractional differential equations with a Caputo derivative with respect to kernel function and their applications, Mathematical Methods in the Applied Sciences, 41 (2018), 336-352. https://doi.org/10.1002/mma.4617
- A.K. Shukla and J.C. Prajapati, On a generalization of Mittag-Leffler function and its properties, Journal of Mathematical Analysis and Applications, 336 (2007), 797-811. https://doi.org/10.1016/j.jmaa.2007.03.018
- K. Diethelm, An algorithm for the numerical solution of differential equation of fractional order, Electronic Transactions on Numerical Analysis, 5 (1997), 1-6.