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SOME REMARKS ON THE GENERALIZED ORDER AND

GENERALIZED TYPE OF ENTIRE MATRIX FUNCTIONS IN

COMPLETE REINHARDT DOMAIN

Tanmay Biswas and Chinmay Biswas∗

Abstract. The main aim of this paper is to introduce the definitions of generalized
order and generalized type of the entire function of complex matrices and then
study some of their properties. By considering the concepts of generalized order
and generalized type, we will extend some results of Kishka et al. [5].

1. Introduction

In this paper we represent the field of complex variables by C and the space of
several complex complex variables by Cn. We assume that the readers are familiar with
the fundamental results and standard notations of the analytic functions of several
complex variables. However, In 1959, Gol’dberg had introduced the definitions of the
Gol’dberg order and Gol’dberg type of entire function in several complex variables
(cf. [2]). For more details about the study of the order and type of entire functions we
refer to ( [1,3], [6] to [9]). The main purpose of this present paper is to study of entire
function of several complex matrices in complete Rinhardt domains which is also
known as poly cylindrical regions. After introducing the definitions of generalized
order and generalized type of the entire function of complex matrices in complete
Reinhardt domains, we study some of their growth properties which considerably
extend the earlier results of [5]. To prove our main results we have followed some of
the techniques as used by Kishka et al. [5].

Let z = (z1, z2, ..., zn) be a point of Cn; the space of several complex variables,
a closed complete Reinhardt domain of radii (αsr > 0); s ∈ I = 1, 2, 3, ..., n is here
denoted by Γ[αr] and is given by

Γ[αr] = {z ∈Cn : |zs| ≤ αsr; s ∈ I,

where αs are positive numbers.
The open Reinhardt domain is here denoted by Γ[αr] and is given by

Γ[αr] = {z ∈Cn : |zs| < αsr; s ∈ I.
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However, we consider unspecified domain containing the closed complete Reinhardt
domain Γ[αr]. This domain will be of radii αsr1; r1 > r, then making a contraction to

this domain, we will get the domain D([αr+]) = D([α1r
+, α2r

+, ..., αnr
+]), where r+

stands for the right-limit of r+ at r+ (see [4]).
The order and type of entire functions of several complex variables in Reinhardt

domain are given as follows:

Definition 1.1. [2, 4, 7] The order ρ of the entire function f(z) for the closed
complete Reinhardt domain Γ[αr] is defined as follows:

ρ = lim sup
r→+∞

ln[2]M [αr]

ln r
,

where
M [αr] = M [α1r, α2r, ..., αnr] = max

Γ[αr]

|f(z)|

and ln[0] r = r, ln[2] r = ln(ln r).

Definition 1.2. [2, 4, 7] The type τ of the entire function f(z) for the closed
complete Reinhardt domain Γ[αr] is defined as follows:

τ = lim sup
r→+∞

lnM [αr]

rρ
,

where 0 < ρ < +∞.

Now we give the following two results relating to the entire function f(z) for
the closed complete Reinhardt domain Γ[αr].

Theorem 1.3. [2,4,7] The necessary and sufficient condition that the entire func-
tion f(z) of several complex variables should be of order ρ in the closed complete
Reinhardt domain Γ[αr] is that

ρ = lim sup
〈m〉→+∞

〈m〉 ln 〈m〉

− ln
(
|am|

n∏
s=1

αmss

) ,

where

〈m〉 = m1 +m2 +m3 + ...+mn and m = (m1 +m2 +m3 + ...+mn).

Theorem 1.4. [2,4,7] The necessary and sufficient condition that the entire func-
tion f(z) of several complex variables should be of type τ in the closed complete
Reinhardt domain Γ[αr] is that

τ =
1

eρ
lim sup
〈m〉→+∞

〈m〉
(
|am|

n∏
s=1

αmss

) ρ
〈m〉

.

1.1. Analytic Functions of Complex Matrices. First of all, it is to be mentioned
that, for the simplicity, we consider only two complex matrices, though the results
can easily be extended to several complex matrices. Taking this into account, let us
consider the space CN×N of all matrices X = [xij] and Y = [yij], where xij and yij
are complex numbers;i, j = 1, 2, 3, ..., N . Let F (X, Y ) be a matrix function such that

F = [fij]; fij = f(xij, yij) ∀ i, j = 1, 2, 3, ..., N .
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Suppose that the matrix function F (X, Y ) of two square complex matrices is given
by a power series in the form

(1) F (X, Y ) =
∑
m,n

am,nX
mY n; m,n ≥ 0

where

Xm =
∑

k1,k2,...,km−1

xik1xk1k2 ...xkm−1j

and

Y n =
∑

k1,k2,...,kn−1

xik1xk1k2 ...xkn−1j
,

;in the assumption that X0 = Y 0 = I, where I is the unit matrix of order N and
XmY n is equal to a square complex matrix Z = [zij], where

zij =
N∑
k=1

{xm}ik{yn}kj.

Therefore

(2) fij =
∑
m,n

am,nzij; m,n ≥ 0.

Consequently, we can say that the function F (X, Y ) is convergent if the elements fij
given in (2) are convergent series for all i, j = 1, 2, ..., N . Now we consider the domain
which is a subset of the space determined by the two inequalities

(3) |X| < ‖α1R‖ and |Y | < ‖α2R‖ .

The symbol |X| denotes the matrix (|xij|) whose elements are the modulii of the
elements xij of the matrix X, and the symbol ‖α‖ denotes a matrix each of its elements
is equal to the positive number. Hence the above two inequalities implies that

|xij| < α1R and |yij| < α2R; i, j = 1, 2, 3, ..., N .

Hence, there is a number r where 0 < r < R such that

|xij| < α1r and |yij| < α2r; i, j = 1, 2, 3, ..., N ,

where (xij, yij) ∈ Γ[αsR]; αsR (> 0), αs are positive numbers, s = 1, 2.
Now, Let F (z, w) =

∑
m,n

am,nz
mwn be the scalar function of two variables z and w

associated with the matrix function in (1), that F (z, w) is analytic function in the
complete Reinhardt domain Γ[αsNR]. As

(4) F (z, w) =
∑
m,n

am,nz
mwn, M [αs(NR)] = max

Γ[αsNR]

|F (z, w)|

and

(5) |am,n| =
M

αm1 α
n
2 (NR)m+n

; m,n ≥ 0,
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we get that

|fij| = |
∑
m,n

am,nzij| ≤
∑
m,n

|am,n||
N∑
k=1

{xm}ik{yn}kj|

≤
∑
m,n

|am,n|
N∑
k=1

Nm−1(α1r)
mNn−1(α2r)

n =
M

N

∑
m,n

( r
R

)m+n

=
M

N

+∞∑
ν=1

( r
R

)ν
=

M

N
(

1− r
R

)2 ;(6)

i, j = 1, 2, 3, ..., N ; (xij, yij) ∈ Γ[αsR].

Therefore the matrix function F (X, Y ) as given in (1) is absolute convergence. Since
r can be chose arbitrary near to R, then we state the following theorem.

Theorem 1.5. (see [5, p. 34]) If the function F (z, w) as given in (4) is analytic
in Γ[αsNR], then the function F (X, Y ) as given in (1) will be analytic in Γ[αsR] and

bounded on Γ[αsNR], where N is the common order of the matrices X and Y .

If the matrix function

F (X, Y ) = f1(X)f2(Y ) =
(+∞∑
m=0

a1
mX

m
)(+∞∑

n=0

a2
nY

n
)

=
+∞∑
m,n=0

am,nX
mY n; am,n = a1

ma
2
n(7)

associated with the scalar function

F (z, w) = f1(z)f2(w) =
(+∞∑
m=0

a1
mz

m
)(+∞∑

n=0

a2
nw

n
)

=
+∞∑
m,n=0

am,nz
mwn; am,n = a1

ma
2
n,(8)

then we obtain the following theorem:

Theorem 1.6. (see [5, p. 34]) If the functions f1 and f2 of the single variables z
and w are analytic in |z| < α1NR and|w| < α2NR, then the matrix function F (X, Y )
of square complex matrices X and Y each of them of order N , as given in (7) will be
analytic in Γ[αsR].

Now, if we assume that the scalar functions

(9) F (z, w) =
+∞∑
m,n=0

am,nz
mwn and G(z, w) =

+∞∑
m,n=0

bm,nz
mwn

are analytic in Γ[αsNR], then according to (5), we obtain that

(10) |am,n| ≤
M1

αm1 α
n
2 (NR)m+n

; m,n ≥ 0, M1 ≥ 1
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and

(11) |bm,n| ≤
M2

αm1 α
n
2 (NR)m+n

; m,n ≥ 0, M2 ≥ 1.

Let F (X, Y ) and G(X, Y ) be the matrix functions associated with the scalar functions
(9) in the form

(12) F (X, Y ) =
+∞∑
m,n=0

am,nX
mY n and G(X, Y ) =

+∞∑
m,n=0

bm,nX
mY n.

Then we can write the product matrix function P (X, Y ) as follows:

(13) P (X, Y ) = F (X, Y ) ·G(X, Y ) =
∑
m,n=0

Cm,nX
mY n,

where

Cm,n =
m∑
h=0

n∑
k=0

ah,kbm−h,n−k.

From (10) and (11), one may deduce that

Cm,n =
m∑
h=0

n∑
k=0

ah,kbm−h,n−k

≤
m∑
h=0

n∑
k=0

M1M2

αm1 α
n
2 (NR)m+n

= (m+ 1)(n+ 1)
M1M2

αm1 α
n
2 (NR)m+n

.(14)

Thus

max
Γ[αsNr ]

∥∥∥∥∥ ∑
m,n=0

Cm,nX
mY n

∥∥∥∥∥
≤

∑
m,n=0

|Cm,n| max
Γ[αsNr ]

‖XmY n‖

≤ (m+ 1)(n+ 1)
M1M2(r)m+n

(R)m+n
< +∞.(15)

Therefore the product matrix function P (X, Y ) given in (13) is analytic function in
the complete Reinhardt domain Γ[αsNR]. Since r can be chose arbitrary near to R,
then we state the following theorem.

Theorem 1.7. (see [5, p. 35]) The matrix function P (X, Y ) as given in (13) is
absolute convergence in Γ[αsNR] and analytic in some region if the functions F (z, w)

and G(z, w) as given in (9) are analytic in Γ[αsNR].

1.2. On The Order and Type of Entire Matrix Functions. Let

(16) F (X, Y ) =
∑
m,n

am,nX
mY n; m,n ≥ 0,

be an entire function of two square complex matrices X and Y each of them is of
order N . Then it follows that

(17) M [αsr] = M [α1r, α2r] = max
ij

max
Γ[αsr]

|F (X, Y )|.
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So

(18) |am,n|αm1 αn2 ≤
NM [αsr]

(rN)m+n
; m,n ≥ 0.

Therefore, the radius of regularity of the matrix function F (X, Y ) is infinity, i. e.,

(19) lim sup
m+n→+∞

{Nm+n|am,n|αm1 αn2}
1

m+n = 0.

In this connection, we recall the following two definitions.

Definition 1.8. [5] The order Ω of the entire matrix function F (X, Y ) is given by

Ω = lim sup
r→+∞

ln[2] M [αsr]

ln r
.

Definition 1.9. [5] The type Θ of the entire matrix function F (X, Y ) with order
Ω ∈ (0,+∞) is given by

Θ = lim sup
r→+∞

lnM [αsr]

rΩ
.

If the entire matrix function F (X, Y ) is given by a power series in (16), then
we state the following two results due to Kishka et al. [5] concerning the function of
two square complex matrices:

Theorem 1.10. [5] A necessary and sufficient condition that the entire matrix
function F (X, Y ) =

∑
m,n

am,nX
mY n should be of order Ω is that

Ω = lim sup
m+n→+∞

(m+ n) ln(m+ n)

− ln(Nm+n|am,n|αm1 αn2 )
.

Theorem 1.11. [5] If the entire matrix function F (X, Y ) =
∑
m,n

am,nX
mY n is of

finite generalized order Ω, then the necessary and sufficient condition should be of
type Θ is that

Θ =
NΩ

eΩ
lim sup
m+n→+∞

(m+ n){|am,n|αm1 αn2}
Ω

m+n .

2. Main Results

First of all let L be a class of continuous non-negative on (−∞,+∞) function
β such that β(r) = β(r0) ≥ 0 for r ≤ r0 and β(r) ↑ +∞ as r0 ≤ r → +∞. We
say that β ∈ L1, if β ∈ L and β((1 + o(1))r) = (1 + o(1))β(r) as r → +∞. Finally,
β ∈ Lsi, if β ∈ L and β(cr) = (1 + o(1))β(r) as r → +∞ for each fixed c ∈ (0,+∞),
i.e., β is slowly increasing function. Clearly Lsi ⊂ L1.

Considering this, Sheremeta [11] in 1967, introduced the concept of generalized
order of entire functions in complex context taking two function belonging to L. For
details about the generalized order of entire functions, one may see [11]. However,
during the past decades, several authors made close investigations on the properties
of entire functions related to generalized order in some different direction. For the
purpose of further applications, here in this paper we introduce the definitions of the
generalized order and the generalized type of the entire matrix function F (X, Y ) =∑
m,n

am,nX
mY n in the following way:
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Definition 2.1. The generalized order % of the entire matrix function F (X, Y ) is
given by

% = lim sup
r→+∞

β1(ln[2]M [αsr])

β2(ln r)
(β1 ∈ L, β2 ∈ L).

Definition 2.2. The generalized type λ of the entire matrix function F (X, Y )
with generalized order % ∈ (0,+∞) is given by

λ = lim sup
r→+∞

exp(β1(ln[2] M [αsr]))

(exp(β2(ln r)))%
(β1 ∈ L, β2 ∈ L).

Remark 2.3. If β1(r) = β2(r) = r, then Definition 1.8 and Definition 1.9 are
special cases of Definition 2.1 and Definition 2.2 respectively.

Now we add three conditions on β1 and β2: (i) β1 and β2 always denote the

functions belonging to L1, (ii) β1(r) = o
(
β2

(
exp r
r

))
as r → +∞ and (iii) β1(ln r) =

o(β2(r)) as r → +∞. Henceforth, we assume that β1 and β2 always satisfy the above
three conditions.

Now we present the main results of this paper. In the sequel, we use the
following notation due to Sato [10]:

exp[0] r = r, exp[2] r = exp(exp r).

Theorem 2.4. If

(20) lim sup
r→+∞

β1(ln[2] M [αsr])

β2(ln r)
≤ γ,

then

(21) lim sup
m+n→+∞

β1(ln(m+ n))

β2

(
− ln(Nm+n|am,n|αm1 αn2 )

(m+n)

) ≤ γ.

Proof. If γ = +∞ then there is nothing to prove. If γ1 > γ, then for a suitable
number r0, we get from (20) that

M [αsr] < exp[2](β−1
1 (γ1β2(ln r))); r0 < r,

hence by Cauchy’s inequality in (18) gives

(22) Nm+n|am,n|αm1 αn2 ≤ min
r0<r

N
exp[2](β−1

1 (γ1β2(ln r)))

(r)m+n
; r0 < r.

Now we choose the integer µ such that

(23) exp
(
β−1

2

( 1

γ1

β1(m+ n)
))

> r0.....for m+ n > µ.

So from (22) and (23) we get that

Nm+n|am,n|αm1 αn2 ≤ min
r>r0

N
exp[2](β−1

1 (γ1β2(ln r)))

(r)m+n

= N
exp[2](m+ n)(

exp
(
β−1

2

(
1
γ1
β1(m+ n)

))))m+n ;

m+ n > µ.
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Thus we get from above that

ln(Nm+n|am,n|αm1 αn2 )

≤ lnN + ln
( exp[2](m+ n)(

exp
(
β−1

2

(
1
γ1
β1(m+ n)

)))m+n

)

i.e., ln(Nm+n|am,n|αm1 αn2 )

≤ lnN + exp(m+ n)− ln
(

exp
(
β−1

2

( 1

γ1

β1(m+ n)
)))m+n

i.e., − ln(Nm+n|am,n|αm1 αn2 )

≥ − lnN − exp(m+ n) + (m+ n)
(
β−1

2

( 1

γ1

β1(m+ n)
))

i.e.,
(m+ n)

(
β−1

2

(
1
γ1
β1(ln(m+ n))

))
− ln(Nm+n|am,n|αm1 αn2 )

<
(m+ n)

(
β−1

2

(
1
γ1
β1(ln(m+ n))

))
− lnN − exp(m+ n) + (m+ n)

(
β−1

2

(
1
γ1
β1(m+ n)

))

<

(m+n)

(
β−1

2

(
1
γ1
β1(ln(m+n))

))
(m+n)

(
β−1

2

(
1
γ1
β1(m+n)

))
− lnN

(m+n)

(
β−1

2

(
1
γ1
β1(m+n)

)) − exp(m+n)

(m+n)

(
β−1

2

(
1
γ1
β1(m+n)

)) + 1
.(24)

Since
β2

(
exp r
r

)
β1(r)

→ +∞ as r → +∞,

so,

(m+n)

(
β−1
2

(
1
γ1
β1(ln(m+n))

))
(m+n)

(
β−1
2

(
1
γ1
β1(m+n)

))
− lnN

(m+n)

(
β−1
2

(
1
γ1
β1(m+n)

))− exp(m+n)

(m+n)

(
β−1
2

(
1
γ1
β1(m+n)

))+1
→ 0 as m+ n→ +∞. Therefore

from (24), we get that

(m+ n)
(
β−1

2

(
1
γ1
β1(ln(m+ n))

))
− ln(Nm+n|am,n|αm1 αn2 )

→ 0 as m+ n→ +∞

i.e.,
1

γ1

<
β2

(
− ln(Nm+n|am,n|αm1 αn2 )

(m+n)

)
β1(ln(m+ n))

i.e., lim sup
m+n→+∞

β1(ln(m+ n))

β2

(
− ln(Nm+n|am,n|αm1 αn2 )

(m+n)

) ≤ γ1.

Since γ1 can be chosen arbitrary near to γ, therefore the conclusion of the theorem
follows from above.
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Theorem 2.5. If

(25) lim sup
m+n→+∞

β1(ln(m+ n))

β2

(
− ln(Nm+n|am,n|αm1 αn2 )

(m+n)

) ≤ γ,

then

(26) lim sup
r→+∞

β1(ln[2]M [asr])

β2(ln r)
≤ γ.

Proof. If γ = +∞ then there is nothing to prove. If γ1 > γ,then there is an integer
µ such that

β1(ln(m+ n))

β2

(
− ln(Nm+n|am,n|αm1 αn2 )

(m+n)

) ≤ γ1; m+ n > µ,

i.e.,
β1(ln(m+ n))

γ1

≤ β2

(− ln(Nm+n|am,n|αm1 αn2 )

(m+ n)

)
i.e., Nm+n|am,n|αm1 αn2

≤ exp
(
− (m+ n)β−1

2

(β1(ln(m+ n))

γ1

))
; m+ n > µ.(27)

By using (16) and (17), we obtain that

(28) M [αsr] ≤ max
ij

max
Γ[asr]

|
∑
m,n

am,nX
mY n| ≤ 1

N

+∞∑
m,n=0

(Nr)m+n|am,n|αm1 αn2 .

Now for a number r0 > 1 such that exp(β−1
1 (γ1β2(ln(2r)))) > µ and r > r0, we can

fix the integer n1 such that

n1 ≤ exp(β−1
1 (γ1β2(ln(2r)))) < n1 + 1; r > r0.

then from (27), (28) and above we get that

M [αsr] ≤
1

N

{
µ∑

m,n=0

+
+∞∑

m,n=µ+1

}
(Nr)m+n|am,n|αm1 αn2

=
1

N

{
A+

+∞∑
m,n=µ+1

(r)m+n exp
(
− (m+ n)β−1

2

(β1(ln(m+ n))

γ1

))}

=
1

N

{
A+

n1∑
m,n=µ+1

(r)m+n exp
(
− (m+ n)β−1

2

(β1(ln(m+ n))

γ1

))
+

+∞∑
m,n=n1+1

(r)m+n exp
(
− (m+ n)β−1

2

(β1(ln(m+ n))

γ1

))}
.(29)
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Now
n1∑

m,n=µ+1

(r)m+n exp
(
− (m+ n)β−1

2

(β1(ln(m+ n))

γ1

))
< rn1

n1∑
m,n=µ

exp
(
− (m+ n)β−1

2

(β1(ln(µ+ 1))

γ1

))
< rn1

+∞∑
m,n=0

exp
(
− (m+ n)β−1

2

(β1(ln(µ+ 1))

γ1

))
= Brexp(β−1

1 (γ1β2(ln(2r)))),(30)

and
+∞∑

m,n=n1+1

(r)m+n exp
(
− (m+ n)β−1

2

(β1(ln(m+ n))

γ1

))
<

+∞∑
m,n=n1+1

(r)m+n exp
(
− (m+ n)β−1

2

(β1(ln(n1 + 1))

γ1

))
<

+∞∑
m,n=n1+1

(1

2

)m+n

<
∞∑

m,n=0

(1

2

)m+n

= C.(31)

Therefore from (29), (30) and (31) we get that

M [αsr] ≤ K exp(exp(β−1
1 (γ1β2(ln(2r)))) ln r), r > r0,

whereB, C, and K are constants. Hence from above we get that

ln[2]M [αsr] ≤ β−1
1 (γ1β2(ln(2r))) + ln[2] r + o(1).

Since β1(ln r)
β2(r)

→ 0 as r → +∞ and β2 ∈ L1, so it follows from above that

β1(ln[2]M [αsr]) ≤ (1 + o(1))γ1β2(ln(2r))

i.e.,
β1(ln[2] M [αsr])

(1 + o(1))β2(ln(r))
≤ (1 + o(1))γ1.(32)

Making r tend to infinity, we get from (32) that

(33) lim sup
r→+∞

β1(ln[2] M [αsr])

β2(ln r)
≤ γ1.

Since γ1 can be chosen arbitrary near to γ, therefore the conclusion of the theorem
follows from (33).

The following theorem is a natural consequence of Theorem 2.4 and Theorem
2.5.

Theorem 2.6. A necessary and sufficient condition that the entire matrix function
F (X, Y ) =

∑
m,n

am,nX
mY n should be of generalized order % is that

% = lim sup
m+n→+∞

β1(ln(m+ n))

β2

(
− ln(Nm+n|am,n|αm1 αn2 )

(m+n)

) .
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The proof is omitted.

Theorem 2.7. If

(34) lim sup
r→+∞

exp(β1(ln[2]M [asr]))

(exp(β2(ln r)))%
≤ γ,

then

(35) lim sup
m+n→+∞

exp(β1(ln(m+ n)))(
exp

(
β2

(
ln
(

1
N
e

(|am,n|αm1 αn2 )
1

m+n

))))% ≤ γ.

Proof. If γ = +∞ then there is nothing to prove. If γ1 > γ, then for a suitable
number r0, we get from (34) that

M [αsr] < exp[2](β−1
1 (ln(γ1(exp(β2(ln r)))%))); r0 < r,

hence from (18) we get that

(36) Nm+n|am,n|αm1 αn2 ≤ min
r0<r

N
exp[2](β−1

1 (ln(γ1(exp(β2(ln r)))%)))

(r)m+n
; r0 < r.

Now we choose the integer µ such that

(37) exp
(
β−1

2

(
ln
(exp(β1(ln(m+ n)))

γ1

) 1
%
))

> r0.....for m+ n > µ.

So from (36) and (37) we get that

Nm+n|am,n|αm1 αn2 ≤ min
r>r0

N
exp[2](β−1

1 (ln(γ1(exp(β2(ln r)))%)))

(r)m+n

= N
exp(m+ n)(

exp
(
β−1

2

(
ln
(

exp(β1(ln(m+n)))
γ1

) 1
%
)))m+n

;

m+ n > µ,

i.e.,
N

e
(|am,n|αm1 αn2 )

1
m+n

≤ 1

exp
(
β−1

2

(
ln
(

exp(β1(ln(m+n)))
γ1

) 1
%
))

i.e.,
1

N
e

(|am,n|αm1 αn2 )
1

m+n

≥ exp
(
β−1

2

(
ln
(exp(β1(ln(m+ n)))

γ1

) 1
%
))

i.e.,
(

exp
(
β2

(
ln
( 1
N
e

(|am,n|αm1 αn2 )
1

m+n

))))%
≥ exp(β1(exp(m+ n)))

γ1
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i.e.,
1(

exp
(
β2

(
ln
(

1
N
e

(|am,n|αm1 αn2 )
1

m+n

))))%
≤ γ1

exp(β1(exp(m+ n)))

i.e., lim sup
m+n→+∞

exp(β1(exp(m+ n)))(
exp

(
β2

(
ln
(

1
N
e

(|am,n|αm1 αn2 )
1

m+n

))))% ≤ γ1.

As γ1 can be taken arbitrary near to γ, hence the required inequality of the theorem
is established from above.

Theorem 2.8. If

(38) lim sup
m+n→+∞

exp(β1(ln(m+ n)))(
exp

(
β2

(
ln
(

1
N
e

(|am,n|αm1 αn2 )
1

m+n

))))% ≤ γ,

then

(39) lim sup
r→+∞

exp(β1(ln[2]M [asr]))

(exp(β2(ln r)))%
≤ γ.

Proof. If γ1 ≥ γ,choose an integer µ > 1 such that we can have from (38) that

exp
(
β−1

2

(
ln
((exp(β1(ln(m+ n)))

γ

) 1
%
)))

≤ 1
N
e

(|am,n|αm1 αn2 )
1

m+n

; m+ n > µ,

i.e., |am,n|αm1 αn2
≤

( e

N ·
(

exp
(
β−1

2

(
ln
((

exp(β1(ln(m+n)))
γ1

) 1
%
)))))m+n

.(40)

Since,

M [αsr] ≤
1

N

+∞∑
m,n=0

(Nr)m+n|am,n|αm1 αn2 ,

so we get in view of (40) that

M [αsr] ≤
1

N

+∞∑
m,n=0

(Nr)m+n
( e

N ·
(

exp
(
β−1

2

(
ln
((

exp(β1(ln(m+n)))
γ1

) 1
%
)))))m+n

.

For a number r0 > 1 such that
2 exp(β−1

1 (ln(γ1(exp(β2(ln(re))))%))) > µ and r > r0, we can fix the integer n1 such
that n1 ≤ 2 exp(β−1

1 (ln(γ1(exp(β2(ln(re))))%))) < n1 + 1; r > r0.
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Therefore

M [αsr]

≤ 1

N

{
µ∑

m,n=0

+
+∞∑

m,n=µ+1

}
(Nr)m+n

.
( e

N ·
(

exp
(
β−1

2

(
ln
((

exp(β1(ln(m+n)))
γ1

) 1
%
)))))m+n

=
1

N

A+

n1∑
m,n=0

(Nr)m+n
( e

N ·
(

exp
(
β−1

2

(
ln
((

exp(β1(ln(m+n)))
γ1

) 1
%
)))))m+n

+

+∞∑
m,n=µ+1

(Nr)m+n
( e

N ·
(

exp
(
β−1

2

(
ln
((

exp(β1(ln(m+n)))
γ1

) 1
%
)))))m+n


≤ {A+B exp[2](β−1

1 (ln(γ1(exp(β2(ln r)))%))) + C}

(41) ≤ K exp[2](β−1
1 (ln(γ1(exp(β2(ln r)))%))).

Making r tend to infinity, we infer from (41) such that

lim sup
r→+∞

exp(β1(ln[2] M [αsr]))

(exp(β2(ln r)))%
≤ γ1.

As γ1 can be taken arbitrary near to γ, hence the required inequality of the theorem
is established from above.

Combining Theorem 2.7 and Theorem 2.8 we may state the following theorem.

Theorem 2.9. If the entire matrix function F (X, Y ) =
∑
m,n

am,nX
mY n is of finite

generalized order %, then the necessary and sufficient condition should be of general-
ized type λ is that

λ = lim sup
m+n→+∞

exp(β1(ln(m+ n)))(
exp

(
β2

(
ln
(

1
N
e

(|am,n|αm1 αn2 )
1

m+n

))))% .
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