DOI QR코드

DOI QR Code

염분 섭취에 의한 시스플라틴 유도 급성 신장 손상의 촉진과 염증 반응과의 연관성

Facilitation of cisplatin-induced acute kidney injury by high salt intake through increased inflammatory response

  • 지선영 (동의대학교 항노화연구소) ;
  • 황보현 (동의대학교 항노화연구소) ;
  • 김민영 (동의대학교 항노화연구소) ;
  • 김다혜 (동의대학교 항노화연구소) ;
  • 박범수 (동의대학교 한의과대학 생화학교실) ;
  • 박정현 ((주)마린바이프로세스) ;
  • 이배진 ((주)마린바이프로세스) ;
  • 이혜숙 (동의대학교 항노화연구소) ;
  • 최영현 (동의대학교 한의과대학 생화학교실)
  • Ji, Seon Yeong (Anti-Aging Research Center, Dong-eui University) ;
  • Hwangbo, Hyun (Anti-Aging Research Center, Dong-eui University) ;
  • Kim, Min Yeong (Anti-Aging Research Center, Dong-eui University) ;
  • Kim, Da Hye (Anti-Aging Research Center, Dong-eui University) ;
  • Park, Beom Su (Department of Biochemistry, College of Korean Medicine, Dong-eui University) ;
  • Park, Joung-Hyun (Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd.) ;
  • Lee, Bae-Jin (Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd.) ;
  • Lee, Hyesook (Anti-Aging Research Center, Dong-eui University) ;
  • Choi, Yung Hyun (Department of Biochemistry, College of Korean Medicine, Dong-eui University)
  • 투고 : 2021.11.25
  • 심사 : 2021.12.02
  • 발행 : 2021.12.31

초록

A high salt diet contributes to kidney damage by causing hypoxia and oxidative stress. Recently, an increase in dietary salt has been reported to induce an inflammatory phenotype in immune cells, further contributing to kidney damage. However, studies on the exact mechanism and role of a high salt diet on the inflammatory response in the kidneys are still insufficient. In this study, a cisplatin-induced acute kidney injury model using C57BL/6 mice was used to analyze the effect of salt intake on kidney injury. Results showed that high salt administration aggravated kidney edema in mice induced by treatment with cisplatin. Moreover, the indicators of kidney and liver function impairment were significantly increased in the group cotreated with high salt compared with that treated with cisplatin alone. Furthermore, the exacerbation of kidney damage by high salt administration was also associated with a decrease in the number of cells in the immune regulatory system. Additionally, high salt administration further decreased renal perfusion functions along with increased cisplatin-induced damage to proximal tubules. This was accompanied by increased expression of T cell immunoglobulin, mucin domain 1 (a biomarker of kidney injury), and Bax (a pro-apoptotic factor). Moreover, cisplatin-induced expression of proinflammatory mediators and cytokines, including cyclooxygenase-2 and tumor necrosis factor-α in kidney tissue, was further increased by high salt intake. Therefore, these results indicate that the kidney's inflammatory response by high salt treatment can further promote kidney damage caused by various pathological factors.

키워드

과제정보

이 논문은 2020년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(유산균이 살아있는 고농도 발효 GABA 소금의 개발 및 상용화 계획, 과제번호 20200073).

참고문헌

  1. Bovee, D. M., Cuevas, C. A., Zietse, R., Danser, A. H. J., Mirabito Colafella, K. M., Hoorn, E. J. 2020. Salt-sensitive hypertension in chronic kidney disease: Distal tubular mechanisms. Am. J. Physiol. Renal Physiol. 319, F729-F745 https://doi.org/10.1152/ajprenal.00407.2020
  2. Majid, D. S., Prieto, M. C., Navar, L. G. 2015. Salt-sensitive hypertension: perspectives on intrarenal mechanisms. Curr. Hypertens. Rev. 11, 38-48. https://doi.org/10.2174/1573402111666150530203858
  3. Ren, J., Crowley, S. D. 2019. Role of T-cell activation in salt-sensitive hypertension. Am. J. Physiol. Heart Circ. Physiol. 316, H1345-H1353. https://doi.org/10.1152/ajpheart.00096.2019
  4. Mattson, D. L. 2014. Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury. Am. J. Physiol. Renal Physiol. 307, F499-508. https://doi.org/10.1152/ajprenal.00258.2014
  5. Hirohama, D., Fujita, T. 2019. Evaluation of the pathophysiological mechanisms of salt-sensitive hypertension. Hypertens. Res. 42, 1848-1857. https://doi.org/10.1038/s41440-019-0332-5
  6. Lu, X., Crowley, S. D. 2018. Inflammation in salt-sensitive hypertension and renal damage. Curr. Hypertens. Rep. 20, 103. https://doi.org/10.1007/s11906-018-0903-x
  7. Saritas, T., Kramann, R. 2021. Kidney allograft fibrosis: Diagnostic and therapeutic strategies. Transplantation 105, e114-e130. https://doi.org/10.1097/TP.0000000000003678
  8. Liu, F., Zhuang, S. 2019. New therapies for the treatment of renal fibrosis. Adv. Exp. Med. Biol. 1165, 625-659. https://doi.org/10.1007/978-981-13-8871-2_31
  9. Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L., Perkovic, V. 2021. Chronic kidney disease. Lancet 398, 786-802. https://doi.org/10.1016/S0140-6736(21)00519-5
  10. Molina, P., Gavela, E., Vizcaino, B., Huarte, E., Carrero, J. J. 2021. Optimizing diet to slow CKD progression. Front. Med. (Lausanne) 8, 654250.
  11. Tchounwou, P. B., Dasari, S., Noubissi, F. K., Ray, P., Kumar, S. 2021. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J. Exp. Pharmacol. 13, 303-328. https://doi.org/10.2147/JEP.S267383
  12. Brown, A., Kumar, S., Tchounwou, P. B. 2019. Cisplatin-based chemotherapy of human cancers. J. Cancer Sci. Ther. 11, 97.
  13. Achkar, I. W., Abdulrahman, N., Al-Sulaiti, H., Joseph, J. M., Uddin, S., Mraiche, F. 2018. Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway. J. Transl. Med. 16, 96. https://doi.org/10.1186/s12967-018-1471-1
  14. Dasari, S., Tchounwou, P. B. 2014. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 740, 364-378. https://doi.org/10.1016/j.ejphar.2014.07.025
  15. McSweeney, K. R., Gadanec, L. K., Qaradakhi, T., Ali, B. A., Zulli A., Apostolopoulos, V. 2021, Mechanisms of cisplatin-induced acute kidney injury: Pathological mechanisms, pharmacological interventions, and genetic mitigations. Cancers (Basel) 13, 1572. https://doi.org/10.3390/cancers13071572
  16. Xiang, X., Guo, C., Tang, C., Cai, J., Dong, Z. 2019. Epigenetic regulation in kidney toxicity: Insights from cisplatin nephrotoxicity. Semin. Nephrol. 39, 152-158. https://doi.org/10.1016/j.semnephrol.2018.12.005
  17. Gentilin, E., Simoni, E., Candito, M., Cazzador, D., Astolfi, L. 2019. Cisplatin-induced ototoxicity: Updates on molecular targets. Trends Mol. Med. 25, 1123-1132. https://doi.org/10.1016/j.molmed.2019.08.002
  18. Hajian, S., Rafieian-Kopaei, M., Nasri, H. 2014. Renoprotective effects of antioxidants against cisplatin nephrotoxicity. J. Nephropharmacol. 3, 39-42.
  19. Holditch, S. J., Brown, C. N., Lombardi, A. M., Nguyen, K. N., Edelstein, C. L. 2019. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. Int. J. Mol. Sci. 20, 3011. https://doi.org/10.3390/ijms20123011
  20. Perse, M., Veceric-Haler, Z. 2018. Cisplatin-induced rodent model of kidney injury: Characteristics and challenges. Biomed. Res. Int. 2018, 1462802.
  21. Taghizadeh, F., Hosseinimehr, S. J., Zargari, M., Karimpour Malekshah, A., Talebpour Amiri, F. B. 2020. Gliclazide attenuates cisplatin-induced nephrotoxicity through inhibiting NF-kappaB and caspase-3 activity. IUBMB Life 72, 2024-2033. https://doi.org/10.1002/iub.2342
  22. Abdelrahman, A. M., Al Suleimani, Y., Shalaby, A., Ashique, M., Manoj, P., Al-Saadi, H., Ali, B.H. 2019. Effect of levosimendan, a calcium sensitizer, on cisplatin-induced nephrotoxicity in rats. Toxicol. Rep. 6, 232-238. https://doi.org/10.1016/j.toxrep.2019.02.006
  23. Griffin, B. R., Faubel, S., Edelstein, C. L. 2019. Biomarkers of drug-induced kidney toxicity. Ther. Drug Monit. 41, 213-226. https://doi.org/10.1097/ftd.0000000000000589
  24. Lin, S., Lin, W., Liao, C., Zhou, T. 2020. Nephroprotective effect of mesenchymal stem cell-based therapy of kidney disease induced by toxicants. Stem Cells Int. 2020, 8819757.
  25. Wen, Y., Yan, H. R., Wang, B., Liu, B. C. 2021.,Macrophage heterogeneity in kidney injury and fibrosis. Front. Immunol. 12, 681748. https://doi.org/10.3389/fimmu.2021.681748
  26. Sankhe, R., Kinra, M., Mudgal, J., Arora, D., Nampoothiri, M. 2020 Neprilysin, the kidney brush border neutral proteinase: a possible potential target for ischemic renal injury. Toxicol. Mech. Methods 30, 88-99. https://doi.org/10.1080/15376516.2019.1669246
  27. Frazier, K. S., Ryan, A. M., Peterson, R. A., Obert, L. A. 2019. Kidney pathology and investigative nephrotoxicology strategies across species. Semin. Nephrol. 39, 190-201. https://doi.org/10.1016/j.semnephrol.2018.12.007
  28. Dong, Q., Jie, Y., Ma, J., Li, C., Xin, T., Yang, D. 2019. Renal tubular cell death and inflammation response are regulated by the MAPK-ERK-CREB signaling pathway under hypoxia-reoxygenation injury. J Recept. Signal. Transduct. Res. 39, 383-391. https://doi.org/10.1080/10799893.2019.1698050
  29. Belavgeni, A., Meyer, C., Stumpf, J., Hugo, C., Linkermann, A. 2020. Ferroptosis and necroptosis in the kidney. Cell. Chem. Biol. 27, 448-462. https://doi.org/10.1016/j.chembiol.2020.03.016
  30. Potocnjak, I., Domitrovic, R. 2016. Carvacrol attenuates acute kidney injury induced by cisplatin through suppression of ERK and PI3K/Akt activation. Food Chem. Toxicol. 98, 251-261. https://doi.org/10.1016/j.fct.2016.11.004
  31. Brooks, C. R., Bonventre, J. V. 2015. KIM-1/TIM-1 in proximal tubular cell immune response. Oncotarget 6, 44059-44060. https://doi.org/10.18632/oncotarget.6623
  32. Karmakova, T. A., Sergeeva, N. S., Kanukoev, K. Y., Alekseev, B. Y., Kaprin, A. D. 2021. Kidney injury molecule 1 (KIM-1): a multifunctional glycoprotein and biological marker (Review). Sovrem. Tekhnologii. Med. 13, 64-78.
  33. Zhao, X. C., Livingston, M. J., Liang, X. L., Dong, Z. 2019. Cell apoptosis and autophagy in renal fibrosis. Adv. Exp. Med. Biol. 1165, 557-584. https://doi.org/10.1007/978-981-13-8871-2_28
  34. Soetikno, V., Sari, S. D. P., Ul Maknun, L., Sumbung, N. K., Rahmi, D. N. I., Pandhita, B. A. W., Louisa, M., Estuningtyas, A. 2019. Pre-treatment with curcumin ameliorates cisplatin-induced kidney damage by suppressing kidney inflammation and apoptosis in rats. Drug Res. (Stuttg) 69, 75-82. https://doi.org/10.1055/a-0641-5148
  35. Yang, R., Zhu, S., Tonnessen, T. I. 2016. Ethyl pyruvate is a novel anti-inflammatory agent to treat multiple inflammatory organ injuries. J. Inflamm. (Lond) 3, 13:37. https://doi.org/10.1186/s12950-016-0144-1
  36. Zhao, Z., Hu, Z., Zeng, R., Yao, Y. 2020. HMGB1 in kidney diseases. Life Sci. 15, 259:118203. https://doi.org/10.1016/j.lfs.2020.118203
  37. Chen, Q., Guan, X., Zuo, X., Wang, J., Yin, W. 2016. The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases. Acta. Pharm. Sin. B. 6, 183-188. https://doi.org/10.1016/j.apsb.2016.02.004
  38. Mehaffey, E., Majid, D. S. A. 2017. Tumor necrosis factor-alpha, kidney function, and hypertension. Am. J. Physiol. Renal Physiol. 313, F1005-F1008. https://doi.org/10.1152/ajprenal.00535.2016
  39. Basu, S. 2007. Novel cyclooxygenase-catalyzed bioactive prostaglandin F2 alpha from physiology to new principles in inflammation. Med. Res. Rev. 27, 435-468. https://doi.org/10.1002/med.20098