DOI QR코드

DOI QR Code

Multi-phase magneto-electro-elastic stability of nonlocal curved composite shells

  • Song, Yu (College of science, Xijing University) ;
  • Xu, Jiangyang (Shaanxi Tongyu Research Institute of Highway Co., LTD)
  • 투고 : 2021.01.23
  • 심사 : 2021.08.20
  • 발행 : 2021.12.25

초록

Analysis of nonlinear stability behaviors of composite magneto-electro-elastic (MEE) nano-scale shells have been represented in this reaserch. The shell is assumed to be under a transverse mechanical load. Composite MEE material has been produced form piezoelectric and magnetic ingradients in which the material charactristics may be varied according to the percentages of the ingradients. The governing equations including scale effects have been developed in the framework of nonlocal elasticity. It has been demonstrated that nonlinear stability behaviors of MEE nano-sized shells in electrical-magnetic fields rely on the percentages of the ingradients. Also, the efficacy of nonlocality parameter, magnetic intensities and electrical voltages on stability loads of the nanoshells have been researched.

키워드

참고문헌

  1. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Advan. Comput. Des., 6(2), 117-133. https://doi.org/10.12989/acd.2021.6.2.117.
  2. Abdullah, W.N., Khalaf, B.S., Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2021), "Thermal effects on dynamic response of GOP-Reinforced beams under blast load", Advan. Concrete Construct., 12(3), 167-174. https://doi.org/10.12989/acc.2021.12.3.167.
  3. Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Coupled Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
  4. Ahmed, R.A., Al-Toki, M.H., Faleh, N.M. and Fenjan, R.M. (2021), "Nonlinear stability of higher-order porous metal foam curved panels with stiffeners", Transport Porous Media, 1-16. https://doi.org/10.1007/s11242-021-01691-2.
  5. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  6. Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Advan. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.
  7. Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. http://dx.doi.org/10.12989/sss.2016.18.6.1125.
  8. Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Advan. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  9. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  10. Barati, M.R. and Zenkour, A. (2019b), "Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates", Iran. J. Sci. Technol. Transact. Mech. Eng., 43(3), 393-404. https://doi.org/10.1007/s40997-018-0215-4.
  11. Barati, M.R. and Zenkour, A.M. (2019a), "Thermal post-buckling analysis of closed circuit flexoelectric nanobeams with surface effects and geometrical imperfection", Mech. Advan. Mater. Struct., 26(17), 1482-1490. https://doi.org/10.1080/15376494.2018.1432821.
  12. Barati, M.R. (2017), "Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates", Smart Struct. Syst, 20(5), 573-581. https://doi.org/10.12989/sss.2017.20.5.573.
  13. Ebrahimi, F. and Barati, M.R. (2018a), "Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams", Microsyst. Technol., 24(8), 3521-3536. https://doi.org/10.1007/s00542-018-3771-z.
  14. Ebrahimi, F. and Barati, M.R. (2018b), "Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory", Composite Struct., 185, 241-253. https://doi.org/10.1016/j.compstruct.2017.10.021.
  15. Ebrahimi, F. and Barati, M.R. (2018c), "Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates", Struct. Eng. Mech., 67(2), 143-153. https://doi.org/10.12989/sem.2018.67.2.143.
  16. Ebrahimi, F. and Barati, M.R. (2018d), "A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM", Struct. Eng. Mech., 66(6), 693-701. https://doi.org/10.12989/sem.2018.66.6.693.
  17. Ebrahimi, F. and Barati, M.R. (2019a), "Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory", Thermal Stresses, 42(12), 1535-1550. https://doi.org/10.1080/01495739.2019.1662352.
  18. Ebrahimi, F. and Barati, M.R. (2019b), "Damping vibration behavior of viscoelastic porous nanocrystalline nanobeams incorporating nonlocal-couple stress and surface energy effects", Iran. J. Sci. Technol. Transact. Mech. Eng., 43(2), 187-203. https://doi.org/10.1007/s40997-017-0127-8.
  19. Ebrahimi, F. and Barati, M.R. (2020), "Propagation of waves in nonlocal porous multi-phase nanocrystalline nanobeams under longitudinal magnetic field", Waves Random Complex Media, 30(2), 308-327. https://doi.org/10.1080/17455030.2018.1506596.
  20. Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.
  21. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupled Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  22. Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020b), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Advan. Comput. Des., 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
  23. Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Advan. Aircraft Spacecraft Sci., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.
  24. Guo, J., Chen, J. and Pan, E. (2016), "Static deformation of anisotropic layered magnetoelectroelastic plates based on modified couple-stress theory", Compos. Part B: Eng., 107, 84-96. https://doi.org/10.1016/j.compositesb.2016.09.044.
  25. Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Advan. Mater. Res., 8(3), 179-196. https://doi.org/10.12989/amr.2019.8.3.179.
  26. Heydari, A. (2020), "Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer", Advan. Comput. Des., 5(4), 397-416. https://doi.org/10.12989/acd.2020.5.4.397.
  27. Ji, X., Hou, C., Shi, M., Yan, Y. and Liu, Y. (2020), "An insight into the research concerning Panax ginseng CA Meyer polysaccharides: A review", Food Rev. Int., 1-17. https://doi.org/10.1080/87559129.2020.1771363.
  28. Jiang, L., Wang, Y., Wang, X., Ning, F., Wen, S., Zhou, Y. and Zhou, F.L. (2021), "Electrohydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses", Compos. Part A: Applied Sci. Manufact., 147, 106461. https://doi.org/10.1016/j.compositesa.2021.106461.
  29. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart Mater. Struct., 23(12), 125036. https://doi.org/10.1088/0964-1726/23/12/125036.
  30. Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment", Multidiscipline Modeling Mater. Struct., 3(4), 461-476. https://doi.org/10.1163/157361107782106401.
  31. Li, X., Dong, Z. Q., Yu, P., Wang, L. P., Niu, X. D., Yamaguchi, H. and Li, D. C. (2021). Effect of self-assembly on fluorescence in magnetic multiphase flows and its application on the novel detection for COVID-19. Physics of Fluids, 33(4), 042004. https://doi.org/10.1063/5.0048123.
  32. Li, Y. and Shi, Z. (2009), "Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature", Compos. Struct., 87(3), 257-264. https://doi.org/10.1016/j.compstruct.2008.01.012.
  33. Li, Y., Macdonald, D.D., Yang, J., Qiu, J. and Wang, S. (2020), "Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics", Corrosion Sci., 163, 108280. https://doi.org/10.1016/j.corsci.2019.108280.
  34. Liu, H., Liu, H. and Yang, J. (2018), "Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation", Compos. Part B: Eng., 155, 244-256. https://doi.org/10.1016/j.compositesb.2018.08.042.
  35. Liu, X., Zhang, G., Li, J., Shi, G., Zhou, M., Huang, B. and Yang, W. (2020), "Deep learning for Feynman's path integral in strong-field time-dependent dynamics", Phys. Rev. Lett., 124(11), 113202. https://doi.org/10.1103/PhysRevLett.124.113202.
  36. Lu, C., Zhu, R., Yu, F., Jiang, X., Liu, Z., Dong, L. and Ou, Z. (2021), "Gear rotational speed sensor based on FeCoSiB/Pb (Zr, Ti) O3 magnetoelectric composite", Measure., 168, 108409. https://doi.org/10.1016/j.measurement.2020.108409.
  37. Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
  38. Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", Journal Strain Anal. Eng. Des., 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285. https://doi.org/10.1177%2F0309324720917285
  39. Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Phys. A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.
  40. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.
  41. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
  42. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
  43. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
  44. Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B. M. and Hamouda, A.M.S. (2020e), "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.
  45. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.
  46. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Advan. Concrete Construct., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.
  47. Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Advan. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.
  48. Muhammad, A.K., Hamad, L.B., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment", Advan. Mater. Res., 8(3), 237-257. https://doi.org/10.12989/amr.2019.8.3.237.
  49. Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3-4), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006.
  50. Polatov, A.M., Khaldjigitov, A.A. and Ikramov, A.M. (2020), "Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM", Advan. Comput. Des., 5(3), 305-321. https://doi.org/10.12989/acd.2020.5.3.305.
  51. Raheef, K.M., Ahmed, R.A., Nayeeif, A.A., Fenjan, R.M. and Faleh, N.M. (2021), "Analyzing dynamic response of nonlocal strain gradient porous beams under moving load and thermal environment", Geomech. Eng., 26(1), 89-99. https://doi.org/10.12989/gae.2021.26.1.089.
  52. Shariati, A., Barati, M.R., Ebrahimi, F. and Toghroli, A. (2020b), "Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory", Advan. Nano Res., 8(3), 191-202. https://doi.org/10.12989/anr.2020.8.3.191.
  53. Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020a), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Advan. Nano Res., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.
  54. Singh, A. and Kumari, P. (2020), "Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach", Advan. Comput. Des., 5(1), 55-89. https://doi.org/10.12989/acd.2020.5.1.055.
  55. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.
  56. Tong, X., Zhang, F., Ji, B., Sheng, M. and Tang, Y. (2016), "Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries", Advan. Mater., 28(45), 9979-9985. https://doi.org/10.1002/adma.201603735.
  57. Wang, M., Jiang, C., Zhang, S., Song, X., Tang, Y. and Cheng, H. M. (2018), "Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage", Nature Chemistry, 10(6), 667-672. https://doi.org/10.1038/s41557-018-0045-4.
  58. Xu, X. and Nieto-Vesperinas, M. (2019), "Azimuthal imaginary Poynting momentum density", Phys. Rev. Lett., 123(23), 233902. https://doi.org/10.1103/PhysRevLett.123.233902.
  59. Yang, W., Lin, Y., Chen, X., Xu, Y., Zhang, H., Ciappina, M. and Song, X. (2021), "Wave mixing and high-harmonic generation enhancement by a two-color field driven dielectric metasurface", Chinese Optics Lett., 19(12), 123202. https://doi.org/10.3788/COL202119.123202.
  60. Zhang, X., Tang, Y., Zhang, F. and Lee, C.S. (2016), "A novel aluminum-graphite dual-ion battery", Advan. Energy Mater., 6(11), 1502588. https://doi.org/10.1002/aenm.201502588.
  61. Zhang, Z., Yang, F., Zhang, H., Zhang, T., Wang, H., Xu, Y. and Ma, Q. (2021), "Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating", Materi. Character., 171, 110732. https://doi.org/10.1016/j.matchar.2020.110732.
  62. Zhou, H., Xu, C., Lu, C., Jiang, X., Zhang, Z., Wang, J. and Wang, L. (2021), "Investigation of transient magnetoelectric response of magnetostrictive/piezoelectric composite applicable for lightning current sensing", Sensors Actuators A: Phys., 329, 112789. https://doi.org/10.1016/j.sna.2021.112789.