DOI QR코드

DOI QR Code

Recent Research Trends of Supercapacitors for Energy Storage Systems

에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향

  • Son, MyungSuk (Advanced Research Center for Future Energy, Dongguk University, Gyeongju Campus) ;
  • Ryu, JunHyung (Advanced Research Center for Future Energy, Dongguk University, Gyeongju Campus)
  • 손명숙 (동국대학교 경주캠퍼스 미래에너지연구원) ;
  • 류준형 (동국대학교 경주캠퍼스 미래에너지연구원)
  • Received : 2021.10.25
  • Accepted : 2021.11.11
  • Published : 2021.12.31

Abstract

A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

슈퍼커패시터는 일반 커패시터(축전지, 콘덴서)에 비해 정전용량이 매우 큰 커패시터로 전기화학 커패시터 혹은 울트라 커패시터(ultracapacitor) 라고도 부르는데, 화학반응을 이용하는 배터리와 달리 전극과 전해질 계면의 단순한 이온 이동이나 표면화학반응에 의한 충전현상을 이용한다. 짧은 충전시간(~ 30초), 우수한 출력특성, 반영구적 수명(~ 100,000 cycle), 낮은 유지비용, 빠른 응답특성, 높은 안정성 등을 특징으로 하여, 백업용 전원, 무정전전원장치, 수송 기계 및 스마트 그리드의 고출력 보조 전원 등 급속 충방전이 필요한 전자기기 및 고출력이 요구되는 산업분야에서 활용되고 있다. 태양광과 풍력 같은 불규칙적인 전력원을 활용하는 발전에서 2차 배터리와 함께 에너지저장장치로 구성되어 상대적으로 느린 배터리의 충·방전 특성을 보상하고 배터리 수명연장에 기여하며 시스템의 전체 전력 품질을 향상시킬 수 있다. 본 고에서는 이처럼 에너지저장장치로 다양한 분야에서 활용되고 있는 슈퍼커패시터에 대해, 전극 재료에 따른 에너지 저장 원리 및 메커니즘, 분류를 간략하게 살펴보고, 국내외 제품 연구, 특허, 시장 및 제품 현황을 제시하여 활용성을 검토하고 향후 전망을 살펴보았다. 에너지 저장 소자로 슈퍼커패시터가 관련 산업 수요에 대응하기 위해서는, 고전압 모듈 기술, 고효율 충전, 안전성, 추가적인 성능개선 및 비용경쟁력 등 아직까지 해결해야 할 과제들이 많다.

Keywords

Acknowledgement

초기 자료 조사를 수행해 준 이슬 연구원에게 감사드립니다. 이 논문은 2021년도 한국연구재단의 기초연구사업(No. 2019M3R6A1065258)사업의 지원을 받음. 류준형은 2020년 동국대학교 DG선진연구강화사업의 지원을 받았음.

References

  1. Abbas, Q., Mirzaeian, M., Hunt, M. R. C., Hall, P., and Raza, R., "Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems," Energies., 13(21), 5847 (2020). https://doi.org/10.3390/en13215847
  2. Jung, J.-H., No, U.-C., Kim, H.-G., and Jeon, T.-W., "Energy Storage System Using Supercapacitors," KIPE Magazine, 17(5), 32-36 (2012).
  3. Chun, H. W., and You, I. K., "Market and Technology Trends in Supercapacitor," Electronics and Telecommunications Trends, 29(5), 186-194 (2014).
  4. Yu, J.-J., "Electrochemical Capacitor Technology and Research Trends," Electrical & Electronic materials, 33(1), 29-37 (2020).
  5. Akinyele, D. O., and Rayudu, R. K., "Review of Energy Storage Technologies for Sustainable Power Networks," Sustain. Energy Technol. Assess., 8, 74-91 (2014).
  6. Maisanam, A. K. S., Biswas, A., and Sharma, K. K., "An Innovative Framework for Electrical Energy Storage System Selection for Remote Area Electrification with Renewable Energy System: Case of a Remote Village in India," J. Renew. Sustain. Energy, 12(2) 024101 (2020). https://doi.org/10.1063/1.5126690
  7. Hannan, M. A., Hoque, M. M., Mohamed, A., and Ayob, A., "Review of Energy Storage Systems for Electric Vehicle Applications: Issues and Challenges," Renew. Sustain. Energy Rev., 69, 771-789 (2017). https://doi.org/10.1016/j.rser.2016.11.171
  8. Hemmati, R., and Saboori, H., "Emergence of Hybrid Energy Storage Systems in Renewable Energy and Transport Applications - A Review," Renew. Sustain. Energy Rev., 65, 11-23 (2016). https://doi.org/10.1016/j.rser.2016.06.029
  9. Ameur, A., Berrada, A., Loudiyi, K., and Adomatis, R., "Chapter 6 - Performance and Energetic Modeling of Hybrid PV Systems Coupled with Battery Energy Storage," Hybrid Energy System Models, 195-238 (2021).
  10. Muzaffar, A., Ahamed, M. B., Deshmukh, K., and Thirumalai, J., "A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications," Renew. Sustain. Energy Rev., 101, 123-145 (2019). https://doi.org/10.1016/j.rser.2018.10.026
  11. Raza, W., Ali, F., Raza, N., Luo, Y., Kim, K.-H., Yang, J., Kumar, S., Mehmood, A., and Kwon, E. E., "Recent Advancements in Supercapacitor Technology," Nano Energy, 52, 441-473 (2018). https://doi.org/10.1016/j.nanoen.2018.08.013
  12. Gogotsi, Y., and Penner, R. M., "Energy Storage in Nanomaterials - Capacitive, Pseudocapacitive, or Battery-like?", ACS Nano, 12(3), 2081-2083 (2018). https://doi.org/10.1021/acsnano.8b01914
  13. Park, J. K., and Bae, Y. C., "Supercapacitor Technology and Information Analysis," KISTI (2013).
  14. Song, G. S., "Development Trends of Supercapacitor Technology for Energy Storage System," KEITI, Konetic Report 2016-111 (2016).
  15. Poonam, Sharma, K., Arora, A., and Tripathi, S. K., "Review of Supercapacitors: Materials and Devices," J. Energy Storage, 21, 801-825 (2019). https://doi.org/10.1016/j.est.2019.01.010
  16. Liu, S., Wei, L., and Wang, H., "Review on Reliability of Supercapacitors in Energy Storage Applications," Appl. Energy, 278, 115436 (2020). https://doi.org/10.1016/j.apenergy.2020.115436
  17. Chen, X., Paul, R., and Dai, L., "Carbon-based Supercapacitors for Efficient Energy Storage," Natl. Sci. Rev., 4(3), 453-489 (2017). https://doi.org/10.1093/nsr/nwx009
  18. Lee, G. H., and Kang, J. K., "Synthesis of Nitrogen-Doped Mesoporous Structures from Metal-Organic Frameworks and Their Utilization Enabling High Performances in Hybrid Sodium-Ion Energy Storages," Adv. Sci., 7(6), 1902986 (2020). https://doi.org/10.1002/advs.201902986
  19. Jeong, H. M., Lee, J. W., Shin, W. H., Choi, Y. J., Shin, H. J., Kang, J. K., and Choi, J. W., "Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes," Nano Lett., 11(6), 2472-2477 (2011). https://doi.org/10.1021/nl2009058
  20. Park, M. G., Choi, J. W., Ock, I. W., Kim, G. H., and Kang, J. K., "Mesoporous Thorn-Covered Core-Shell Cathode and 3D Reduced Graphene Oxide Aerogel Composite Anode with Conductive Multivalence Metal Sulfides for High-Performance Aqueous Hybrid Capacitors," Adv. Energy Mater., 11(12), 2003563 (2021). https://doi.org/10.1002/aenm.202003563
  21. Kang, K.-N., Lee, H., Kim, J., Kwak, M.-J., Jeong, H. Y., Kim, G., and Jang, J.-H., "Co3O4 Exsolved Defective Layered Perovskite Oxide for Energy Storage Systems," ACS Energy Lett., 5(12), 3828-3836 (2020). https://doi.org/10.1021/acsenergylett.0c01779
  22. Noh, C., and Jung, Y., "Understanding the Charging Dynamics of an Ionic Liquid Electric Double Layer Capacitor Via Molecular Dynamics Simulations," Phys. Chem. Chem. Phys., 21(13), 6790-6800 (2019). https://doi.org/10.1039/c8cp07200k
  23. Moon, S., Lee, S. M., Lim, H.-K., Jin, H.-J., and Yun, Y. S., "Relationship between Multivalent Cation Charge Carriers and Organic Solvents on Nanoporous Carbons in 4 V-Window Magnesium Ion Supercapacitors," Adv. Energy Mater., 11(30), 2101054 (2021). https://doi.org/10.1002/aenm.202101054
  24. Pham, T. V., Kim, J.-G., Jung, J. Y., Kim, J. H., Cho, H., Seo, T. H., Lee, H., Kim, N. D., and Kim, M. J., "High Areal Capacitance of N-Doped Graphene Synthesized by Arc Discharge," Adv. Funct. Mater., 29(48), 1905511 (2019). https://doi.org/10.1002/adfm.201905511
  25. http://www.dmbnews.kr/news/articleView.html?idxno=20779 (accessed Aug. 2021)
  26. Gaur, A. P. S., Xiang, W., Nepal, A., Wright, J. P., Chen, P., Nagaraja, T., Sigdel, S., LaCroix, B., Sorensen, C. M., and Das, S. R., "Graphene Aerosol Gel Ink for Printing Micro-Supercapacitors," ACS Appl. Energy Mater., 4(8), 7632-7641 (2021). https://doi.org/10.1021/acsaem.1c00919
  27. "Eco-friendly Energy Storage Warehouse, Super Capacitor Patent Application Active," Korean Intellectual Property Office (2020).
  28. https://www.fnnews.com/news/202105160221232011 (accessed Aug. 2021).
  29. Jang, W. S., and Lee, J. H., "Crisis of the ESS Industrial Ecosystem in Korea," Hyundai Research Institute, VIP Report 20-02 (2020).
  30. Ministry of SMEs and Startups, "TECHNOLOGY ROADMAP FOR SME 2021-2023 Secondary Battery", 174-214 (2020).
  31. KOREA Investor Relations Service, "Supercapacitor" Innovative Growth Item Report 2021-32 (2021).
  32. Korea Battery Industry Association, "Strategy to Strengthen the Industrial Competitivenes of Ultracapacitor for IT Application," 10-Policy-14 (2010).