DOI QR코드

DOI QR Code

Functional Cosmetic Characteristics of Grape Skin Extract

포도껍질 추출물의 기능성 화장품 소재 특성

  • Shin, Eun Min (Department of Chemical Engineering and ERI, Gyeongsang National University) ;
  • Kim, Ju Yeon (Department of Chemical Engineering and ERI, Gyeongsang National University) ;
  • Park, Si Eun (Department of Chemical Engineering and ERI, Gyeongsang National University) ;
  • Kim, Chang-Joon (Department of Chemical Engineering and ERI, Gyeongsang National University)
  • 신은민 (경상국립대학교 화학공학과 및 공학연구원) ;
  • 김주연 (경상국립대학교 화학공학과 및 공학연구원) ;
  • 박시은 (경상국립대학교 화학공학과 및 공학연구원) ;
  • 김창준 (경상국립대학교 화학공학과 및 공학연구원)
  • Received : 2021.11.09
  • Accepted : 2021.11.26
  • Published : 2021.12.31

Abstract

Grape skins are a natural resource rich in antioxidants, but people only eat grape flesh and have discarded the skins. This study investigated the possibility of using grape skin extract as a raw material for functional cosmetics. The dried grape skin powder was put in distilled water and stirred for 1 h, and then the supernatant separated from the solid was used as an extract. The extract yield was 17.8 ~ 31.4%, and the total flavonoid and polyphenol contents in the extract were 1.8 ~ 2.5 mg-QE g-extract-1 and 16.9 ~ 20.3 mg-GAE g-extract-1, respectively. The extract effectively removed radicals of DPPH and ABTS, and the degree of scavenging increased with the concentration of the extract. The extract inhibited the collagen hydrolysis activity of collagenase, and the activity inhibition rate increased to 84.2% as the extract concentration increased. However, notable inhibition of tyrosinase by the extract was not found. As the extract of Chamaecyparis obtusa was added to the grape-skin extract, the tyrosinase inhibition rate increased, but the DPPH radical scavenging activity decreased. This study found that grape skin extract has a high antioxidant capacity and anti-wrinkle effect but a low whitening effect. However, by mixing the grape skin extract with the extract of C. obtusa in an optimal ratio, the whitening effect was improved with excellent antioxidant and anti-wrinkle effects.

포도껍질은 항산화 물질을 다량 함유한 유용자원임에도 불구하고 사람들은 포도의 과육만 섭취하고 포도껍질을 폐기하고 있다. 본 연구에서는 포도껍질 추출물을 기능성 화장품 원료로의 사용 가능성을 조사하였다. 건조된 포도껍질 분말을 증류수에 넣고 1 h 동안 교반시킨 후 고형물로부터 분리된 상등액을 추출물로 사용하였다. 추출 수율은 17.8 ~ 31.4%였고 추출물에 함유된 총 플라보노이드와 폴리페놀 함량은 각각 1.8 ~ 2.5 mg-QE g-extract-1와 16.9 ~ 20.3 mg-GAE g-extract-1였다. 추출물은 2,2-diphenyl-1-picrylhydrazyl (DPPH)와 Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTSTM) 라디칼을 효과적으로 제거하였고 소거정도는 추출물 농도에 따라 증가하였다. Collagenase의 콜라겐 가수분해 활성이 추출물에 의해 저해를 받았고 추출물 농도 증가에 따라 활성 저해율이 84.2%까지 증가하였다. 그러나 추출물에 의한 tyrosinase 활성 저해가 크지 않았다. 추출물에 편백수를 첨가함에 따라 tyrosinase 활성 저해율이 높아졌으나 DPPH 라디칼 소거활성은 오히려 감소하였다. 본 연구를 통하여 포도껍질 추출물은 항산화능과 주름개선 효능이 높은 반면 미백 효능은 낮은 것으로 확인되었다. 추출물에 편백수를 적절히 혼합함으로써 항산화능과 주름개선 효능이 우수할 뿐만 아니라 미백 효능도 향상되었다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2020R1F1A1054433).

References

  1. Khoo, H. E., Azlan, A., Tang, S. T., and Lim, S. M., "Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and The Potential Health Benefits," Food Nutr. Res., 61, 1361779 (2017). https://doi.org/10.1080/16546628.2017.1361779
  2. Saito, M., Hosoyama, H., Ariga, T., Kataoka, S., and Yamaji, N., "Antiulcer Activity of Grape Seed Extract and Procyanidins," J. Agric. Food Chem., 46(4), 1460-1464 (1998). https://doi.org/10.1021/jf9709156
  3. Hudson, T. S., Hartle, D. K., Hursting, S. D., Nunez, N. P., Wang, T. T., Young, H. A., Arany, P., and Green, J. E., "Inhibition of Prostate Cancer Growth by Muscadine Grape Skin Extract and Resveratrol Through Distinct Mechanisms," Cancer Res., 67(17), 8396-8405 (2007). https://doi.org/10.1158/0008-5472.CAN-06-4069
  4. Udenigwe, C. C., Ramprasath, V. R., Aluko, R. E., and Jones, P. J., "Potential of Resveratrol in Anticancer and Anti-inflammatory Therapy," Nutr. Rev., 66(8), 445-454 (2008). https://doi.org/10.1111/j.1753-4887.2008.00076.x
  5. Yun, J. W., Lee, W. S., Kim, M. J., Lu, J. N., Kang, M. H., Kim, H. G., Kim, D. C., Choi, E. J., Choi, J. Y., Kim, H. G., Lee, Y. K., Ryu, C. H., Kim, G., Choi, Y. H., Park, O. J., and Shin, S. C., "Characterization of A Profile of The Anthocyanins Isolated from Vitis coignetiae Pulliat and Their Anti-invasive Activity on HT-29 Human Colon Cancer Cells," Food Chem. Toxicol., 48(3), 903-909 (2010). https://doi.org/10.1016/j.fct.2009.12.031
  6. Jayaprakasha, G. K., Singh, R. P., and Sakariah, K. K., "Antioxidant Activity of Grape Seed (Vitis vinifera) Extracts on Peroxidation Models in Vitro," Food Chem., 73(3), 285-290 (2001). https://doi.org/10.1016/S0308-8146(00)00298-3
  7. Rockenbach, I. I., Gonzaga, L. V., Rizelio, V. M., Goncalves, A. E. D. S. S., Genovese, M. I., and Fett, R., "Phenolic Compounds and Antioxidant Activity of Seed and Skin Extracts of Red Grape (Vitis Vinifera and Vitis labrusca) Pomace from Brazilian Winemaking," Food Res. Int., 44(4), 897-901 (2011). https://doi.org/10.1016/j.foodres.2011.01.049
  8. Li, X., Li, J., Dong, S., Li, Y., Wei, L., Zhao, C., Li, J., Liu, X., and Wang, Y., "Effects of Germination on Tocopherol, Secoisolarlciresinol Diglucoside, Cyanogenic Glycosides and Antioxidant Activities in Flaxseed (Linum usitatissimum L.)," Int. J. Food Sci. Technol., 54(7), 2346-2354 (2019). https://doi.org/10.1111/ijfs.14098
  9. Pientaweeratch, S., Panapisal, V., and Tansirikongkol, A., "Antioxidant, Anti-collagenase and Anti-elastase Activities of Phyllanthus emblica, Manilkara zapota and Silymarin: An In Vitro Comparative Study for Anti-aging Applications," Pharm. Biol., 54(9), 1865-1872 (2016). https://doi.org/10.3109/13880209.2015.1133658
  10. Ghimeray, A. K., Jung, U. S., Lee, H. Y., Kim, Y. H., Ryu, E. K., and Chang, M. S., "In Vitro Antioxidant, Collagenase Inhibition, and in Vivo Anti-wrinkle Effects of Combined Formulation Containing Punica Granatum, Ginkgo Biloba, Ficus Carica, and Morus Alba Fruits Extract," Clin. Cosmet. Investig. Dermatol., 8, 389-396 (2015).
  11. Wittenauer, J., Mackle, S., Sussmann, D., Weisz, U. S., and Carle, R., "Inhibitory Effects of Polyphenols from Grape Pomace Extract on Collagenase and Elastase Activity," Fitoterapia, 101, 179-187 (2015). https://doi.org/10.1016/j.fitote.2015.01.005
  12. Li, F., Li, F., Yang, Y., Yin, R., and Ming, J., "Comparison of Phenolic Profiles and Antioxidant Activities in Skins and Pulps of Eleven Grape Cultivars (Vitis Vinifera L.)," J. Integr. Agric., 18(5), 1148-1158 (2019). https://doi.org/10.1016/S2095-3119(18)62138-0
  13. Oh, D. G., and Kim, C. J., "Analysis of Consumer Type According to Eco-friendly Consciousness and The Development of Eco-friendly Cosmetics Package Design," J. Korean Soc. Costume., 71(1), 86-102 (2021). https://doi.org/10.7233/jksc.2021.71.1.086
  14. Park, S. H., "Extracting Apparatus and An Extracting Method using that A Chamaecyparis Obtusa Oil," KR Patent No. 102,105,797 (2020).
  15. Formagio, A. S. N., Volobuff, C. R. F., Santiago, M., Cardoso, C. A. L., Vieira, M. D. C., and Pereira, Z. V., "Evaluation of Antioxidant Activity, Total Flavonoids, Tannins and Phenolic Compounds in Psychotria Leaf Extracts," Antioxidants., 3(4), 745-757 (2014). https://doi.org/10.3390/antiox3040745
  16. Jing, L., Ma, H., Fan, P., Gao, R., and Jia, Z., "Antioxidant Potential, Total Phenolic and Total Flavonoid Contents of Rhododendron Anthopogonoides and Its Protective Effect on Hypoxia-induced Injury in PC12 Cells," BMC Complement. Altern. Med., 15, 287-298 (2015). https://doi.org/10.1186/s12906-015-0820-3
  17. Kilani, S., Ammar, R. B., Bouhlel, I., Abdelwahed, A., Hayder, N., Mahmoud, A., Ghedira, K., and Chekir-Ghedira, L., "Investigation of Extracts from (Tunisian) Cyperus Rotundus as Antimutagens and Radical Scavengers," Environ. Toxicol. Pharmacol., 20(3), 478-484 (2005). https://doi.org/10.1016/j.etap.2005.05.012
  18. Choi, C. W., Kim, S. C., Hwang, S. S., Choi, B. K., Ahn, H. J., Lee, M. Y., Park, S. H., and Kim, S. K., "Antioxidant Activity and Free Radical Scavenging Capacity Between Korean Medicinal Plants and Flavonoids by Assay-guided Comparison," Plant Sci., 163(6), 1161-1168 (2002). https://doi.org/10.1016/S0168-9452(02)00332-1
  19. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C., "Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay," Free Radic. Biol. Med., 26(9-10), 1231-1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  20. Sasagawa, Y., Kamio, Y., Matsubara, Y., Matsubara, Y., Suzuki, K., Kojima, H., and Izaki, K., "Purification and Properties of Collagenase from Cytophaga sp. L43-1 Strain," Biosci. Biotechnol. Biochem., 57(11), 1894-1898 (1993). https://doi.org/10.1271/bbb.57.1894
  21. Ishihara, Y., Oka, M., Tsunakawa, M., Tomita, K., Hatori, M., Yamamoto, H., Kamei, H., Miyaki, T., Konishi, M., and Oki, T., "Melanostatin, A New Melanin Synthesis Inhibitor: Production, Isolation, Chemical Properties, Structure and Biological Activity," J. Antibiot., 44(1), 25-32 (1991). https://doi.org/10.7164/antibiotics.44.25
  22. Wong, B. Y., Tan, C. P., and Ho, C. W., "Effect of Solid-to-solvent Ratio on Phenolic Content and Antioxidant Capacities of "Dukung Anak" (Phyllanthus niruri)," Int. Food Res. J., 20(1), 325-330 (2013).
  23. Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., and Koirala, N., "Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal," Plants., 8(4), 96-107 (2019). https://doi.org/10.3390/plants8040096
  24. Granados-Guzman, G., Salazar-Aranda, R., Garza-Tapia, M., Castro-Rios, R., and Waksman de Torres, N., "Optimization and Validation of Two High-throughput Methods Indicating Antiradical Activity," Curr. Anal. Chem., 13(6), 499-507 (2017).
  25. Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., and Merillon, J. M., "Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays," J. Agric. Food Chem., 57(5), 1768-1774 (2009). https://doi.org/10.1021/jf803011r
  26. Floegel, A., Kim, D. O., Chung, S. J., Koo, S. I., and Chun, O. K., "Comparison of ABTS/DPPH Assays to Measure Antioxidant Capacity in Popular Antioxidant-rich US Foods," J. Food Compos. Anal., 24(7), 1043-1048 (2011). https://doi.org/10.1016/j.jfca.2011.01.008
  27. Chung, H. J., "Comparative Study of Antioxidant Activity of Imported Tropical and Subtropical Fruits," Korean J. Food Preserv., 22(4), 577-584 (2015). https://doi.org/10.11002/KJFP.2015.22.4.577
  28. Lee, H. H., and Moon, Y. S., "Assessment of The Important Factors Influencing Consistent and Accurate ABTS Assay," J. Korean Soc. Food. Sci. Nutr., 48(3), 390-393 (2019). https://doi.org/10.3746/jkfn.2019.48.3.390
  29. Dong, J. W., Cai, L., Xing, Y., Yu, J., and Ding, Z. T., "Re-evaluation of ABTS+ Assay for Total Antioxidant Capacity of Natural Products," Nat. Prod. Commun., 10(12), 2169-2172 (2015).
  30. Subhan, F., Ikram, M. Shehzad, A., and Ghafoor, A., "Marine Collagen: An Emerging Player in Biomedical Applications," J. Food Sci. Technol., 52(8), 4703-4707 (2015). https://doi.org/10.1007/s13197-014-1652-8
  31. Silva, T. H., Moreira-Silva, J., Marques, A. L. P., Domingues, A., Bayon, Y., and Reis, R. L., "Marine Origin Collagens and Its Potential Applications," Mar. Drugs., 12(12), 5881-5901 (2014). https://doi.org/10.3390/md12125881
  32. Varani, J., Warner, R. L., Gharaee-Kermani, M., Phan, S. H., Kang, S., Chung, J. H., Wang, Z. Q., Datta, S. C., Fisher, G. J., and Voorhees, J. J., "Vitamin A Antagonizes Decreased Cell Growth and Elevated Collagen-degrading Matrix Metalloproteinases and Stimulates Collagen Accumulation in Naturally Aged Human Skin," J. Invest. Dermatol., 114(3), 480-486 (2000). https://doi.org/10.1046/j.1523-1747.2000.00902.x
  33. Shin, J. W., Kwon, S. H., Choi, J. Y., Na, J. I., Huh, C. H., Choi, H. R., and Park, K. C., "Molecular Mechanisms of Dermal Aging and Antiaging Approaches," Int. J. Mol. Sci., 20(9), 2126-2141 (2019). https://doi.org/10.3390/ijms20092126
  34. Acikara, O. B., Ilhan, M., Kurtul, E., Smejkal, K., and Akkol, E. K., "Inhibitory Activity of Podospermum Canum and its Active Components on Collagenase, Elastase and Hyaluronidase Enzymes," Bioorg. Chem., 93, 103330 (2019). https://doi.org/10.1016/j.bioorg.2019.103330
  35. Shirzad, M., Hamedi, J., Motevaseli, E., and Modarressi, M. H., "Anti-elastase and Anti-Collagenase Potential of Lactobacilli Exopolysaccharides on Human Fibroblast," Artif. Cells Nanomed. Biotechnol., 46(1), 1051-1061 (2018). https://doi.org/10.1080/21691401.2018.1443274
  36. Masum, M. N., Yamauchi, K., and Mitsunaga, T., "Tyrosinase Inhibitors from Natural and Synthetic Sources as Skin-lightening Agents," Rev. Agric. Sci., 7, 41-58 (2019). https://doi.org/10.7831/ras.7.41
  37. Pillaiyar, T., Manickam, M., and Namasivayam, V., "Skin Whitening Agents: Medicinal Chemistry Perspective of Tyrosinase Inhibitors," J. Enzyme Inhib. Med. Chem., 32(1), 403-425 (2017). https://doi.org/10.1080/14756366.2016.1256882
  38. Del Marmol, V., Ito, S., Jackson, I., Vachtenheim, J., Berr, P., Ghanem, G., Morandini, R., Wakamatsu, K., and Huez, G., "TRP-1 Expression Correlates with Eumelanogenesis in Human Pigment Cells in Culture," FEBS Lett., 327(3), 307-310 (1993). https://doi.org/10.1016/0014-5793(93)81010-W
  39. Zhang, C., Lu, Y., Tao, L., Tao, X., Su, X., and Wei, D., "Tyrosinase Inhibitory Effects and Inhibition Mechanisms of Nobiletin and Hesperidin from Citrus Peel Crude Extracts," J. Enzyme Inhib. Med. Chem., 22(1), 83-90 (2007). https://doi.org/10.1080/14756360600953876
  40. Hsu, C. K., Chou, S. T., Huang, P. J., Mong, P. J., Wang, C. K., Hsueh, Y. P., and Jhan, J. K., "Crude Ethanol Extracts from Grape Seeds and Peels Exhibit Anti-tyrosinase Activity," J. Cosmet. Sci., 63(4), 225-232 (2012).
  41. Ekundayo, O., "Monoterpene Composition of The Needle Oils of Pinus Species," J. Chromatogr. Sci., 16(7), 294-295 (1978). https://doi.org/10.1093/chromsci/16.7.294
  42. Kim, S. H., Lee, S. Y., Hong, C. Y., Gwak, K. S., Yeo, H. M., Lee, J. J., and Choi, I. G., "Whitening and Antioxidant Activities of Essential Oils from Cryptomeria Japonica and Chamaecyparis Obtusa," J. Korean Wood Sci. Technol., 39(4), 291-302 (2011). https://doi.org/10.5658/WOOD.2011.39.4.291
  43. Joung, Y. W., Kim, Y. M., and Jang, Y. A., "Studies on The Antioxidant and Whitening Effects of Chamaecyparis Obtusa Extract," J. Korean Appl. Sci. Technol., 37(6), 1496-1506 (2020). https://doi.org/10.12925/JKOCS.2020.37.6.1496
  44. Kim, J. H., Lee, S. O., Do, K. B., Ji, W. D., Kim, S. G., Back, Y. D., and Kim, K. J., "Analysis of The Component and Immunological Efficacy of Chamaecyparis Obtusa Leaf Extract," Korean J. Clin. Lab. Sci., 50(1), 37-43 (2018). https://doi.org/10.15324/kjcls.2018.50.1.37