DOI QR코드

DOI QR Code

Decentralized control strategy for storage systems in islanded microgrids

  • Received : 2021.04.23
  • Accepted : 2021.09.23
  • Published : 2021.12.20

Abstract

This paper presents a decentralized control strategy for the distributed storage (DS) systems of the islanded microgrid composed of distributed generations (DGs) and DSs. Each of the DSs consists of a bidirectional DC-DC converter cascaded with a three-phase inverter. Control strategies for DSs and DGs are based on droop control. The line frequency of the point of common coupling (PCC) is an agent to regulate the active power of the DS. Due to the power mismatch among the supplies and load demands of DGs, the frequency controller of the DS generates its active power reference. In addition, the frequency deviation caused by droop control can be reduced. Reactive load power is almost equally shared by all of the constituent units. Therefore, the DS works by charging or discharging the energy storage devices. Simulation and experimental results are provided to verify the effectiveness of the proposed control strategy.

Keywords

References

  1. Lasseter, R.H., Piagi, P.: Microgrid: a conceptual solution. In: Pro. Power Electron. Spec. Conf. pp. 4285-4290 (2004)
  2. Guo, Z., Grid, O.O.: A conceptual solution. In: Pro. Power Electron. Spec. Conf. Multiworking modes compromising ZVS and conduction loss. IEEE Trans. Ind. Electron. vol. 67, no. 9, pp. 7399 (2004)
  3. Li, J., Liu, Y., Wu, L.: Optimal operation for community-based multi-party microgrid in grid-connected and islanded modes. IEEE Trans. Smart Grid 9(2), 756-765 (2018) https://doi.org/10.1109/tsg.2016.2564645
  4. Mueller, J.A., Rasheduzzaman, M., Kimball, J.W.: A model modification process for grid-connected inverters used in islanded microgrids. IEEE Trans. Energy Convers. 31(1), 240-250 (2016) https://doi.org/10.1109/TEC.2015.2476600
  5. Sami, S., Cheng, M., Wu, J., Jenkins, N.: A virtual energy storage system for voltage control of distribution networks. CSEE J. Power Energy Syst. 4(2), 146-154 (2018) https://doi.org/10.17775/cseejpes.2016.01330
  6. Guo, Z., Sha, D., Liao, X.: Wireless paralleled control strategy of three-phase inverter modules for islanding distributed generation systems. J. Power Electron. 13(3), 479-486 (2013) https://doi.org/10.6113/JPE.2013.13.3.479
  7. Guo, Z., Sha, D., Liao, X.: Voltage magnitude and frequency control of three-phase voltage source inverter for seamless transfer. IET Power Electron. 7(1), 200-208 (2013) https://doi.org/10.1049/iet-pel.2012.0723
  8. Guerrero, J.M., Hang, L., Uceda, J.: Control of distributed uninterruptible power supply systems. IEEE Trans. Ind. Electron. 56(3), 2845-2859 (2009)
  9. Babayomi, O., Li, Z., Zhang, Z.: Distributed secondary frequency and voltage control of parallel-connected VSCs in microgrids: a predictive VSG-based solution. CPSS Trans. Power Electron. Appl. 5(4), 342-351 (2020) https://doi.org/10.24295/cpsstpea.2020.00028
  10. Patarroyo-Montenegro, J.F., Guerrero, J.M., Vasquez, J.C.: A linear quadratic regulator with optimal reference tracking for three-phase inverter-based islanded microgrids. IEEE Trans. Power Electron. 36(6), 7112-7122 (2021) https://doi.org/10.1109/TPEL.2020.3036594
  11. Kim, J., Guerrero, J.M., Rodriguez, P., Teodorescu, R., Nam, K.: Mode adaptive droop control with virtual output impedances for an inverter-based fexible AC microgrid. IEEE Trans. Ind. Electron. 26(3), 689-701 (2011) https://doi.org/10.1109/TPEL.2010.2091685
  12. Majumder, R.: Reactive power compensation in single-phase operation of microgrid. IEEE Trans. Ind. Electron. 60(4), 1403-1416 (2013) https://doi.org/10.1109/TIE.2012.2193860
  13. Guerrero, J.M., Vasquez, J.C., Matas, J., de Vicuna, L.G., Castilla, M.: Hierarchical control of droop-controlled AC and DC Microgrids-a general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158-172 (2011) https://doi.org/10.1109/TIE.2010.2066534
  14. Simpson-Porco, J.W., Shafee, Q., Dorfler, F., Vasquez, J.C., Guerrero, J.M., Bullo, F.: Secondary frequency and voltage control of islanded microgrids via distributed averaging. IEEE Trans. Ind. Electron. 62(11), 7025-7038 (2015) https://doi.org/10.1109/TIE.2015.2436879
  15. Zhao, H., Hong, M., Lin, W., Loparo, K.A.: Voltage and frequency regulation of microgrid with battery energy storage systems. IEEE Trans. Smart Grid 10(1), 414-424 (2019) https://doi.org/10.1109/tsg.2017.2741668
  16. Beltran, H., Bilbao, E., Belenguer, E., Otadui, I.E., Rodriguesz, P.: Evaluation of storage energy requirements for constant production in PV power plants. IEEE Trans. Ind. Electron. 60(3), 1225-1234 (2013) https://doi.org/10.1109/TIE.2012.2202353
  17. Golsorkhi, M.S., Shafiee, Q., Lu, D.D., Guerrero, J.M.: Distributed control of low-voltage resistive AC microgrids. IEEE Trans. Energy Convers. 34(2), 573-584 (2019) https://doi.org/10.1109/tec.2018.2878690
  18. Liu, W., Chen, J., Liang, T., Lin, R.: dMulticascoded sources for a high-efficiency fuel-cell hybrid power system in high-voltage application. IEEE Trans. Power Electron. 26(3), 931-942 (2011) https://doi.org/10.1109/TPEL.2010.2089642
  19. Zhang, Z., Ouyang, Z., Thomsen, O.C., Andersen, M.A.E.: Analysis and design of a bidirectional isolated dc-dc converter for fuel cells and supercapacitors hybrid system. IEEE Trans. Power Electron. 27(2), 848-859 (2012) https://doi.org/10.1109/TPEL.2011.2159515
  20. Oudalov, A., Chartouni, D., Ohler, C.: Optimizing a battery energy storage system for primary frequency control. IEEE Trans. Power Syst. 22(3), 1259-1266 (2007) https://doi.org/10.1109/TPWRS.2007.901459
  21. Datta, M., Senjyu, T., Yona, A., Funabashi, T., Kim, C.: A frequency-control approach by photovoltaic generator in a PV-diesel hybrid power system. IEEE Trans. Energy Convers. 26(2), 559-571 (2011) https://doi.org/10.1109/TEC.2010.2089688
  22. Karimi, Y., Oraee, H., Golsorkhi, M.S., Guerrero, J.M.: Decentralized method for load sharing and power management in a PV/battery hybrid source islanded microgrid. IEEE Trans. Power Electron. 32(5), 3525-3535 (2017) https://doi.org/10.1109/TPEL.2016.2582837
  23. Kim, J., Jeon, J., Kim, S., Cho, C., Park, J., Kim, H., Nam, K.: Cooperative control strategy of energy storage system and micro-sources for stabilizing the microgrid during islanded operation. IEEE Trans. Power Electron. 25(12), 3037-3048 (2010) https://doi.org/10.1109/TPEL.2010.2073488
  24. Jeon, J., Kim, J., Kim, H., Kim, S., Cho, C., Kim, J., Ahn, J., Nam, K.: Development of hardware in-the-loop simulation system for testing operation and control functions of microgrid. IEEE Trans. Power Electron. 25(12), 2919-2929 (2010) https://doi.org/10.1109/TPEL.2010.2078518
  25. Chatzinikolaou, E., Rogers, D.: A comparison of grid-connected battery energy storage system designs. IEEE Trans. Power Electron. 32(9), 6913-6923 (2017) https://doi.org/10.1109/TPEL.2016.2629020
  26. Jin, K., Yang, M., Ruan, X., Xu, M.: Three-level bidirectional converter for fuel-cell/battery hybrid power system. IEEE Trans. Ind. Electron. 57(6), 1976-1986 (2010) https://doi.org/10.1109/TIE.2009.2031197
  27. Jayasinghe, S., Vilathgamuwa, D., Madawala, U.: Direct integration of battery energy storage systems in distributed power generation. IEEE Trans. Energy Convers. 26(2), 677-685 (2011) https://doi.org/10.1109/TEC.2011.2122262
  28. Leonardo Diaz, N., Vasquez, J.C., Guerrero, J.M.: A communication-less distributed control architecture for islanded microgrids with renewable generation and storage. IEEE Trans. Power. Electron. 33(3), 1922-1939 (2018) https://doi.org/10.1109/TPEL.2017.2698023