DOI QR코드

DOI QR Code

LLC inverter design for driving surface DBD optimized for airborne bacteria inactivation

  • Kim, Yeong Woon (Advanced Forming Process R&D Group, Korea Institute of Industrial Technology) ;
  • Wellawatta, Thusita Randima (Advanced Forming Process R&D Group, Korea Institute of Industrial Technology) ;
  • Choi, Sung‑Jin (Department of Electrical, Electronic and Computer Engineering, University of Ulsan) ;
  • Choi, Jun (Advanced Forming Process R&D Group, Korea Institute of Industrial Technology)
  • 투고 : 2021.04.29
  • 심사 : 2021.10.01
  • 발행 : 2021.12.20

초록

This paper proposes a design for an LLC resonant inverter with reflecting plasma characteristics to improve indoor air quality. A surface dielectric barrier discharge (SDBD) helps improve indoor air quality since it effectively inactivates airborne bacteria. By collaborating with plasma physics and power electronics, this study electrically models the SDBD structure. Thus, it presents a compact and commercially viable plasma generation circuit to drive the SDBD feature. The traditional LLC inverter design procedure is not optimized for such an application due to utilization differences. An LLC resonant inverter operating in the resonant mode combined with a step-up transformer is optimally designed to generate a 4-kVpk-pk, 7.8-kHz sinusoidal voltage with a total power consumption of less than 2.5 W. By investigating optical emission spectroscopy (OES), the production of a reactive species for the inactivation of airborne bacteria is confirmed. Furthermore, the sterilization performance is tested by observing the removal rate of the Staphylococcus epidermidis (S. epidermidis) bacteria inside a 1 m3 chamber.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MISP) (No. NRF-2019R1F1A1042084)

참고문헌

  1. Kostov, K.G., Rocha, V., Koga-Ito, C.Y., Matos, B.M., Algatti, M.A., Honda, R.Y., Mota, R.P.: Bacterial sterilization by a dielectric barrier discharge (DBD) in air. Surf. Coat. Technol. 204(18-19), 2954-2959 (2010) https://doi.org/10.1016/j.surfcoat.2010.01.052
  2. Laroussi, M.: Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Trans. Plasma Sci. 24(3), 1188-1191 (1996) https://doi.org/10.1109/27.533129
  3. Lai, A.C.K., Cheung, A.C.T., Wong, M.M.L., Li, W.S.: Evaluation of cold plasma inactivation efficacy against different airborne bacteria in ventilation duct flow. Build. Environ. 98, 39-46 (2016) https://doi.org/10.1016/j.buildenv.2015.12.005
  4. Helmke, A., Hoffmeister, D., Berge, F., Emmert, S., Laspe, P., Mertens, N., Vioel, W., Weltmann, K.D.: Physical and microbiological characterisation of Staphylococcus epidermidis inactivation by dielectric barrier discharge plasma. Plasma Process. Polym. 8(4), 278-286 (2011) https://doi.org/10.1002/ppap.201000168
  5. Montie, T.C., Kelly-Wintenberg, K., Roth, J.R.: An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans. Plasma Sci. 28(1), 41-50 (2000) https://doi.org/10.1109/27.842860
  6. Eliasson, B., Hirth, M., Kogelschatz, U.: Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D: Appl. Phys. 20(11), 1421 (1987) https://doi.org/10.1088/0022-3727/20/11/010
  7. Wei, L.S., Yuan, D.K., Zhang, Y.F., Hu, Z.J., Dong, G.P.: Experimental and theoretical study of ozone generation in pulsed positive dielectric barrier discharge. Vacuum 104, 61-64 (2014) https://doi.org/10.1016/j.vacuum.2014.01.009
  8. Chae, B., Min, J., Suh, Y., Kim, H., Kim, H.: Pulse current generator with improved waveform fidelity for high-voltage capacitively coupled plasma systems. J. Power Electron. 20(5), 1316-1327 (2020) https://doi.org/10.1007/s43236-020-00110-x
  9. Corke, T.C., Post, M.L., Orlov, D.M.: Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exp. Fluids. 46(1), 1-26 (2009) https://doi.org/10.1007/s00348-008-0582-5
  10. Moshkunov, S.I., Podguyko, N.A., Shershunova, E.A.: Compact high voltage pulse generator for DBD plasma jets. J. Phys. Conf. Ser. 1115(2), 022032 (2018) https://doi.org/10.1088/1742-6596/1115/2/022032
  11. Borghi, C.A., Cristofolini, A., Grandi, G., Neretti, G., Seri, P.: A plasma aerodynamic actuator supplied by a multilevel generator operating with different voltage waveforms. Plasma Sources Sci. Technol. 24(4), 045018 (2015) https://doi.org/10.1088/0963-0252/24/4/045018
  12. Florez, D., Schitz, D., Piquet, H., Diez, R.: Efficiency of an exciplex DBD lamp excited under different methods. IEEE Trans. Plasma Sci. 46(1), 140-147 (2017) https://doi.org/10.1109/tps.2017.2777835
  13. Amjad, M., Salam, Z., Facta, M., Mekhilef, S.: Analysis and implementation of transformerless LCL resonant power supply for ozone generation. IEEE Trans. Power Electron. 28(2), 650-660 (2012) https://doi.org/10.1109/TPEL.2012.2202130
  14. Lim, D., Uddin, N., Choi, S., Choi, D., Choi, J.: Dual microwave-excited atmospheric-pressure plasma jets with a single power source. Jpn. J. Appl. Phys. 60(2), 026001 (2021) https://doi.org/10.35848/1347-4065/abd3bd
  15. Kwon, M. J., Lee, W. C.: A study on the analysis and control of no-load characteristics of LLC resonant converter for plasma process. In 2018 international power electronics conference. 114-117 (2018)
  16. Pemen, A.J.M., Chirumamilla, V.R., Beckers, F.J.C.M., Hoeben, W.F.L.M., Huiskamp, T.: An SDBD plasma-catalytic system for on-demand air purification. IEEE Trans. Plasma Sci. 46(12), 4078-4090 (2018) https://doi.org/10.1109/TPS.2018.2855402
  17. Tudoran, C.D., Surducan, V., Simon, A., Papiu, A.M., Dinu, O.E., Anghel, S.D.: High frequency inverter based atmospheric pressure plasma treatment system. Rom. J. Phys. 57, 1382-1391 (2012)
  18. Pipa, A.V., Hink, R., Foest, R., Brandenburg, R.: Dependence of dissipated power on applied voltage for surface barrier discharge from simplest equivalent circuit. Plasma Sources Sci. Technol. 29(12), 12LT01 (2020) https://doi.org/10.1088/1361-6595/abc415
  19. Bouanaka, F., Boudjadar, A., Rebiai, S.: Modeling and electrical characterization of atmospheric-pressure surface dielectric barrier discharge (SDBD) in Argon. In 2019 international conference on advanced electrical engineering (ICAEE). 1-6 (2019)
  20. Kriegseis, J., Moller, B., Grundmann, S., Tropea, C.: Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. J. Electrostat. 69(4), 302-312 (2011) https://doi.org/10.1016/j.elstat.2011.04.007
  21. Husain, E., Nema, R.S.: Analysis of Paschen curves for air, N2 and SF6 using the Townsend breakdown equation. IEEE Trans. Electr. Insul. 4, 350-353 (1982) https://doi.org/10.1109/TEI.1982.298506
  22. Abdelaziz, A.A., Ishijima, T., Seto, T., Osawa, N., Wedaa, H., Otani, Y.: Characterization of surface dielectric barrier discharge influenced by intermediate frequency for ozone production. Plasma Sources Sci. Technol. 25(3), 035012 (2016) https://doi.org/10.1088/0963-0252/25/3/035012
  23. Choi, H.S., Choi, S.J.: Compact drive circuit for capacitive wireless power transfer system utilizing leakage-enhanced transformer. J. Electr. Eng. Technol. 14(1), 191-199 (2019) https://doi.org/10.1007/s42835-018-00005-9
  24. McLyman, C., William T.: Transformer and inductor design handbook. New York, USA (1988)
  25. Kwon, M.J., Kim, T.H., Lee, W.C.: Analysis of the gain characteristic in LLCC resonant converter for plasma power supply. Trans. Korean Inst. Electr. Eng. 65(12), 1992-1999 (2016) https://doi.org/10.5370/KIEE.2016.65.12.1992
  26. Chen, Z., Amaro, I.: Optimizing low side gate resistance for damping phase node ringing of synchronous buck converter. In 2012 IEEE energy conversion congress and exposition (ECCE). 1827-1832 (2012)
  27. Striney, J. A., Anuja, V., Ananth, M. B. J.: Design of integrated ZVS single-inductor synchronous buck converter for multiload applications. In 2016 international conference on electrical, electronics, and optimization techniques (ICEEOT). 4835-4840 (2016)
  28. Dorai, R., Kushner, M.J.: A model for plasma modification of polypropylene using atmospheric pressure discharges. J. Phys. D: Appl. Physics. 36(6), 666 (2003) https://doi.org/10.1088/0022-3727/36/6/309
  29. Choi, J.H., Han, I., Baik, H.K., Lee, M.H., Han, D.W., Park, J.C., Lee, I.S., Song, K.M., Lim, Y.S.: Analysis of sterilization effect by pulsed dielectric barrier discharge. J. Electrostat. 64(1), 17-22 (2006) https://doi.org/10.1016/j.elstat.2005.04.001
  30. Park, S., Park, J.Y., Choe, W.: Origin of hydroxyl radicals in a weakly ionized plasma-facing liquid. Chem. Eng. J. 378, 122163 (2019) https://doi.org/10.1016/j.cej.2019.122163
  31. Seo, D.C., Chung, T.H.: Observation of the transition of operating regions in a low-pressure inductively coupled oxygen plasma by langmuir probe measurement and optical emission spectroscopy. J. Phys. D: Appl Phys. 34(18), 2854 (2001) https://doi.org/10.1088/0022-3727/34/18/320