DOI QR코드

DOI QR Code

Lincomycin induces melanogenesis through the activation of MITF via p38 MAPK, AKT, and PKA signaling pathways

  • Lee, Min Suk (Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University) ;
  • Chung, You Chul (Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University) ;
  • Moon, Seung-Hyun (Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University) ;
  • Hyun, Chang-Gu (Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University)
  • Received : 2021.08.21
  • Accepted : 2021.09.17
  • Published : 2021.12.31

Abstract

Lincomycin is a lincosamide antibiotic isolated from the actinomycete Streptomyces lincolnensis. Moreover, it has been found to be effective against infections caused by Staphylococcus, Streptococcus, and Bacteroides fragillis. To identify the melanin-inducing properties of lincomycin, we used B16F10 melanoma cells in this study. The melanin content and intracellular tyrosinase activity in the cells were increased by lincomycin, without any cytotoxicity. Western blot analysis indicated that the protein expressions of tyrosinase, tyrosinase related protein 1 (TRP1) and TRP2 increased after lincomycin treatment. In addition, lincomycin enhanced the expression of master transcription regulator of melanogenesis, a microphthalmia-associated transcription factor (MITF). Lincomycin also increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and decreased the AKT phosphorylation. Moreover, the activation of tyrosinase activity by lincomycin was inhibited by the treatment with SB203580, which is p38 inhibitor. Furthermore, we also found that lincomycin-induced tyrosinase expression was reduced by H-89, a specific protein kinase A (PKA) inhibitor. These results indicate that lincomycin stimulate melanogenesis via MITF activation via p38 MAPK, AKT, and PKA signal pathways. Thus, lincomycin can potentially be used for treatment of hypopigmentation disorders.

Keywords

Acknowledgement

This research was supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Construction Project for Skin Clinical Solution Center (P0017663).

References

  1. Hearing VJ (2005) Biogenesis of pigment granules: A sensitive way to regulate melanocyte function. J Dermatol Sci 37: 3-14. doi: 10.1016/j.jdermsci.2004.08.014
  2. Tadokoro T, Yamaguchi, Y, Batzer J, Coelho SG, Zmudzka BZ, Miller SA, Wolber R, Beer JZ, Hearing VJ (2005) Mechanisms of skin tanning in different racial/ethnic groups in response to ultraviolet radiation. J Investig Dermatol 124: 1326-1332. doi: 10.1111/j.0022-202X.2005.23760.x
  3. Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84: 539-549. doi: 10.1111/j.1751-1097.2007.00226.x
  4. Bonaventure J, Domingues MJ, Larue L (2013) Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res 26: 316-325. doi: 10.1111/pcmr.12080
  5. Tabassum N, Hamdani M (2014) Plants used to treat skin diseases. Pharmacogn Rev 8: 52-60. doi: 10.4103/0973-7847.125531
  6. d'Ischia M, Wakamatsu K, Cicoira F, Mauro ED, Garcia-Borron JC, Commo S, Galvan I, Ghanem G, Kenzo K, Meredith P, Pezzella A, Santato C, Sarna T, Simon JD, Zecca L, Zucca FA, Napolitano A, Ito S (2015) Melanins and melanogenesis: From pigment cells to human health and technological applications. Pigment Cell Melanoma Res 28: 520-544. doi: 10.1111/pcmr.12393
  7. Hearing VJ, Jimenez M (1987) Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. Int J Biochem 19: 1141-1147. doi: 10.1016/0020-711x(87)90095-4
  8. Tsukamoto K, Jackson IJ, Urabe K, Montague PM, Hearing VJ (1992) A second tyrosinase-related protein, TRP2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J 11: 519-526 https://doi.org/10.1002/j.1460-2075.1992.tb05082.x
  9. Jimenez-Cervantes C, Solano F, Kobayashi T, Urabe K, Hearing VJ, Lozano JA, Garcia-Borron JC (1994) A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J Biol Chem 269: 17993-18000 https://doi.org/10.1016/S0021-9258(17)32408-0
  10. Sugumaran M (2016) Reactivities of quinone methides versus o-quinones in catecholamine metabolism and eumelanin biosynthesis. Int J Mol Sci 17: 1576. doi: 10.3390/ijms17091576
  11. Bentley NJ, Eisen T, Goding CR (1994) Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol Cell Biol 14: 7996-8006. doi: 10.1128/mcb.14.12.7996-8006.1994
  12. Vachtenheim J, Borovansky J (2010) "Transcription physiology" of pigment formation in melanocytes: central role of MITF. Exp Dermatol 19: 617-627. doi: 10.1111/j.1600-0625.2009.01053.x
  13. Widlude HR, Fisher DE (2003) Microphthalmia-associated transcription factor: A critical regulator of pigment cell development and survival. Oncogene 22: 3035-3041. doi: 10.1038/sj.onc.1206443
  14. Saha B, Singh SK, Sarkar C, Bera R, Ratha J, Tobin DJ, Bhadra R (2006) Activation of the Mitf promoter by lipid-stimulated activation of p38-stress signaling to CREB. Pigment Cell Res 19: 595-605. doi: 10.1111/j.1600-0749.2006.00348.x
  15. Ahn JH, Jin SH, Kang HY (2008) LPS induces melanogenesis through p38 MAPK activation in human melanocytes. Arch Dermatol Res 300: 325-329. doi: 10.1007/s00403-008-0863-0
  16. Kim A, Yim NH, Im M, Jung YP, Liang C, Cho WK, Ma JY (2013) Ssanghwa-tang, an oriental herbal cocktail, exerts anti-melanogenic activity by suppression of the p38 MAPK and PKA signaling pathways in B16F10 cells. BMC Complement Altern Med 13: 214. doi: 10.1186/1472-6882-13-214
  17. Chan CF, Huang CC, Lee MY, Lin YS (2014) Fermented broth in tyrosinase-and melanogenesis inhibition. Molecules 19: 13122-13135. doi: 10.3390/molecules190913122
  18. Sun M, Xie HF, Tang Y, Lin SQ, Li JM, Sun SM, Hu XL, Huang YX, Shi W, Jian D (2017) G protein-coupled estrogen receptor enhances melanogenesis via cAMP-protein kinase (PKA) by upregulating microphthalmia-related transcription factor-tyrosinase in melanoma. J Steroid Biochem Mol Bio. 165: 236-246. doi: 10.1016/j.jsbmb.2016.06.012
  19. Kim HJ, Kim IS, Dong Y, Lee IS, Kim JS, Kim JS, Woo JT, Cha BY (2015) Melanogenesis-inducing effect to cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci 16: 8772-8788. doi: 10.3390/ijms16048772
  20. Yao C, Jin CL, Oh JH, Oh IG, Park CH, Chung JH (2015) Ardisia crenata extract stimulates melanogenesis in B16F10 melanoma cells through inhibition ERK1/2 and Akt activation. Mol Med Rep 11: 653-657. doi: 10.3892/mmr.2014.2697
  21. Chung YC, Kim S, Kim JH, Lee GS, Lee JN, Lee NH, Hyun CG (2017) Pratol, an O-methylated flavone, induces melanogenesis in B16F10 melanoma cells via p-p38 and p-JNK upregulation. Molecules 22: 1704. doi: 10.3390/molecules22101704
  22. Im DS, Lee JM, Lee J, Shin HJ, No KT, Park SH, Kim K (2017) Inhibition of collagenase and melanogenesis by ethanol extracts of Orostachys japonicus A. Berger: Possible involvement of Erk and Akt signaling pathways in melanoma cells. Acta Biochim Biophys Sin 49: 945-953. doi: 10.1093/abbs/gmx090
  23. MacLeod AJ, Ross HB, Ozere RL, Digout Geo, van Rooyen CE (1964) Lincomycin: A New Antibiotic Active Against Staphylococci and Other Gram-Positive Cocci. Can Med Assoc J 91: 1056-1060
  24. Duncan IBR, Jeans B (1965) Lincomycin in Hospital Practice. Can Med Assoc J 93: 685-691
  25. Phillips I (1981) Past and current use of clindamycin and lincomycin. J Antimicrob Chemother 7: 11-18. doi: 10.1093/jac/7.suppl_a.11
  26. Wrzesniok D, Otreba M, Beberok A, Buszman E (2013) Impact of kanamycin on melanogenesis and antioxidant enzymes activity in melanocytes-an in vitro study. J Cell Biochem 114: 2746-2752. doi: 10.1002/jcb.24623
  27. Moon SH, Chung YC, Hyun CG (2019) Tobramycin promotes melanogenesis by upregulating p38 MAPK protein phosphorylation in B16F10 melanoma cells. Antibiotics 8: 140. doi: 10.3390/antibiotics8030140
  28. Ullah S, Chung YC, Hyun CG (2020) Induction of melanogenesis by fosfomycin in B16F10 cells through the upregulation of P-JNK and P-p38 signaling pathways. Antibiotics 9: 172. doi: 10.3390/antibiotics9040172
  29. Seiberg M (2001) Keratinocyte-melanocyte interactions during melanosome transfer. Pigment Cell Res 14: 236-242. doi: 10.1034/j.1600-0749.2001.140402.x
  30. Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445: 843-850. doi: 10.1038/nature05660
  31. Delevoye C (2014) Melanin transfer: The keratinocytes are more than gluttons. J Investig Dermatol 134: 877-879. doi: 10.1038/jid.2013.487
  32. Amico-Ruvio SA, Paganelli MA, Myers JM, Popescu GK (2012) Ifenprodil effects on GluN2B-containing glutamate receptors. Mol Pharmacol 82: 1074-1081. doi: 10.1124/mol.112.078998
  33. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 18: 41-58. doi: 10.1038/nrd.2018.168
  34. Jeong SM, Yoon TJ (2021) Development of Pigmentation-Regulating Agents by Drug Repositioning. Int J Mol Sci 22: 3894. doi: 10.3390/ijms22083894
  35. Briganti S, Camera E, Picardo M (2003) Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res 16: 101-110. doi: 10.1034/j.1600-0749.2003.00029.x
  36. Miyamura YI, Coelho SG, Wolber R, Miller SA, Wakamatsu K, Zmudzka BZ, Ito S, Smuda C, Passeron T, Choi W (2007) Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment Cell Res 20: 2-13. doi: 10.1111/j.1600-0749.2006.00358.x