DOI QR코드

DOI QR Code

Anti-inflammatory effect of Distylium racemosum leaf biorenovate extract in LPS-stimulated RAW 264.7 macrophages cells

LPS로 유도된 RAW 264.7 세포에 대한 조록나무 잎 Biorenovation 추출물의 항염증 활성

  • Hong, Hyehyun (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Lee, Kyung-Mi (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Park, Taejin (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Chi, Won-Jae (Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Kim, Seung-Young (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University)
  • Received : 2021.09.10
  • Accepted : 2021.10.15
  • Published : 2021.12.31

Abstract

Biorenovation is a microbial enzyme-based structural modification of component compounds in natural products and synthetic compounds including plant extracts with the potential benefits of improved biological activities compared with its reaction substrates. In this study, we investigated the anti-inflammatory activity of Distylium racemosum leaf extract and D. racemosum leaf biorenovation extract (DLB). As a result, DLB inhibited nitric oxide, prostaglandin E2, and inflammatory cytokines including tumor necrosis factor-α, interleukin-6, interleukin-1β at non-toxic concentrations. In addition, DLB significantly inhibited inducible nitric oxide synthase and cyclooxygenase-2 on LPS-treated RAW 264.7 macrophages. Based on these results, we suggest that the DLB could be used as a potent anti-inflammatory agents. It also suggests that the application of biological evolution has potential usefulness to increase the practical value of natural products.

조록나무는 제주도 및 일본 혼슈 이남, 중국 동남부, 타이완 등에 분포하는 조록나무과의 상록 교목으로, 항산화 및 tyrosinase, elastase의 억제에 효과적인 것으로 알려져 있지만 NO에 대한 억제 효능은 미미한 것으로 보고되었다. 이에 본 연구는 조록나무 잎 추출물(DL)에 biorenovation 생물 전환 기법을 적용하여 항 염증 활성을 증진 시키고자 수행되었다. 이들의 활성은 LPS로 자극된 RAW264.7 염증 모델에서 평가 되었으며 NO, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) 및 전 염증성 사이토카인에 대한 억제 실험이 수행되었다. 그 결과, biorenovation을 적용한 조록나무 잎 추출물(DLB)는 독성이 없는 농도에서 DL대비 향상된 NO와 prostaglandin E2 억제효능을 나타내었으며, 이들의 합성 효소인 iNOS 및 COX-2의 발현에도 유의한 억제 경향을 나타내었다. 또한 대표적인 전 염증성 사이토 카인인 tumor necrosis factor-α, Interleukin 6, Interleukin-1β 에서도 향상된 억제 효능을 확인 하였다. 이러한 결과를 근거로 우리는 biorenovation을 통해 DL의 항염증 효능이 개선될 수 있으며, DLB가 효과적인 천연 항염증 소재로 적용될 수 있음을 제시한다.

Keywords

Acknowledgement

This research was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202102109).

References

  1. Kim YH, Song CH (2013) Anti-Inflammatory Effect of Bower Actinidia in LPS-Stimulated RAW264.7 Cells. Society for Meridian and Acupoint 30(4): 243-251. doi: 10.14406/acu.2013.039
  2. Jeong HR, Sung MS, Kim YH, Ham HM, Choi, YM, Lee JS (2012) Anti-Inflammatory activity of Salvia plebeia R. Br. leaf through heme oxygenase-1 induction in LPS-Stimulated RAW264.7 macrophages. J. Korean Soc. Food Sci. Nutr 41: 888-894. doi: 10.3746/jkfn.2012.41.7.888
  3. Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin. Liver. Dis 30: 245-257. doi: 10.1055/s-0030-1255354
  4. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22: 240-273. doi: 10.1128/CMR.00046-08
  5. Lim KH, Staudt LM (2013) Toll-like receptor signaling. Cold Spring Harb. Perspect. Biol 5(1): a011247. doi: 10.1101/cshperspect.a011247
  6. Dou W, Zhang J, Sun A, Zhang E, Ding L, Mukherjee S, Wei X, Chou G, Wang ZT, Mani S (2013) Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-κB signalling. Br. J. Nutr 110: 599-608. doi: 10.1017/S0007114512005594
  7. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. The FASEB Journal 6: 3051-3064. doi: 10.1096/fasebj.6.12.1381691
  8. Shao J, Li Y, Wang Z, Xiao M, Yin P, Lu Y, Qian X, Xu Y, Liu J (2013) A novel naphthalimide derivative, exhibited anti-inflammatory effects via targeted-inhibiting TAK1 following down-regulation of ERK1/2- and p38 MAPK-mediated activation of NF-κB in LPS-stimulated RAW264.7 macrophages. Int. Immunopharmacol 17: 216-228. doi: 10.1016/j.intimp. 2013.06.008
  9. Guzik TJ, Korbut R. Adamek-guzik T (2003) Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol Pharmacol 54: 469-487
  10. Iwalewa EO, McGaw LJ, Naidoo V, Eloff JN (2007) Inflammation: the foundation of diseases and disorders. A review of phytomedicines of south-african origin used to treat pain and inflammatory conditions. Afr. J. Biotechnol 6: 2868-2885. doi: 10.5897/AJB2007.000-2457
  11. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF, Wahl SM (1993) Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med 178(2): 749-754. doi: 10.1084/jem.178.2.749
  12. Hippeli S, Elstner EF (1999) Inhibition of biochemical model reactions for inflammatory processes by plant extracts: a review on recent developments. Free Radic Res 31: 81-87. doi: 10.1080/10715769900301361
  13. Cho HJ, Shim JH, So HS, YoonPark JH (2012) Mechanism underlying the anti-inflammatory action of piceatannol induced by lipopolysaccharide. J. Korean. Soc. Food. Sci. Nutr 41(9): 1226-1234. doi: 10.3746/jkfn.2012.41.9.1226
  14. Hoffmann C (2000) COX-2 in brain and spinal cord-implications for therapeutic use. Curr. Med. Chem 7(11): 1113-1120. doi: 10.2174/0929867003374282
  15. Yun HY, Dawson VL, Dawson TM (1996) Neurobiology of nitric oxide. Critical Reviews in Neurobiology 10(3): 291-316. doi: 10.1615/critrevneurobiol.v10.i3-4.20
  16. Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeong JH (2012) Anti-Inflammatory effects of extract from Ligus-trum ovalifolium H. leaves on RAW264.7 macrophages. Journal of the Korean Society of Food Science and Nutrition 41: 1205-1210. doi: 10.3746/jkfn.2012.41.9.1205
  17. Park SM, Byun SH, Kim YW, Cho IJ, Kim SC (2012) Inhibitory effect of Mori Folium ethanol extract on pro-inflammatory mediator in lipopolysaccharide activated RAW264.7 cells. Korean. J. Herbol 27: 31-38. doi: 10.6116/kjh.2012.27.3.31
  18. Kim JA, Yang SY, Wamiru A, McMahon JB, Grice SFJL, Beutler JA, Kim YH (2011) New monoterpene glycosides and phenolic compounds from Distylium racemosum and their inhibitory activity against ribonuclease H. Bioorg Med Chem Lett. 21(10): 2840-2844. doi: 10.1016/j.bmcl.2011.03.091
  19. Kim HR, Park GN, Jung BK, Yoon WJ, Jung YH, Chang KS (2016) Antioxidant Activity of Solvent Fractions from Distylium racemosum in Jeju. Korean journal of clinical laboratory science 48 (2): 62-67. doi: 10.15324/kjcls.2016.48.2.62
  20. Ko RK, Kim GO, Hyun CG, Jung DS, Lee NH (2011) Compounds with Tyrosinase Inhibition, Elastase Inhibition and DPPH Radical Scavenging Activities from the Branches of Distylium racemosum Sieb. et Zucc. Phytother. Res 25: 1451-1456. doi: 10.1002/ptr.3439
  21. Kim HH, Kwon JH, Park KH, Kim MH, Oh MH, Choe KI, Park SH, Jin HY, Kim SS, Lee MW (2012) Screening of Antioxidative Activities and Anti-inflammatory Activities in Local Native Plants. Kor J Pharmacogn 43(1): 85-93
  22. Park SY, Kim JD (2020) A Study on Recognition, Current Use and Satisfaction with Natural Cosmetic Products. KSCC 10(2): 157-172
  23. Park TJ, Sim JH, Hong HH, Han DH, Kim SY (2020) Anti-inflammatory Effect of Colocasia esculenta Biorenovate Extract in LPS-stimulated RAW 264.7 Cells. Korean Society for Biotechnology and Bioengineering Journal 35(2): 162-168. doi: 10.7841/ksbbj.2020.35.2.162
  24. Choi BM, Park TJ, Kim JH, Kim SY (2021) The Effect of Brassica napus Biorenovated Extract on the Production of Melanin Production and Tyrosinase Activity in B16F10 Melanoma Cells. Korean Society for Biotechnology and Bioengineering Journal 36(1): 36-41. doi: 10.7841/ksbbj.2021.36.1.36
  25. Choi HR, Park JS, Kim KM, Kim MS, Ko KW, Hyun CG, Ahn JW, Seo JH, Kim SY (2018) Enhancing the antimicrobial effect of genistein by biotransformation in microbial system. Journal of Industrial and Engineering Chemistry. 63: 255-261. doi: 10.1016/j.jiec.2018.02.023
  26. Koirala1 M, Lee YK, Kim MS, Chung YC, Park JS, Kim SY (2019) Biotransformation of Naringenin by Bacillus amyloliquefaciens Into Three Naringenin Derivatives. Natural Product Communications. 14(5): 1934578X1985197. doi: 10.1177/1934578X19851971
  27. Gilroy DW (2010) Eicosanoids and the endogenous control of acute inflammatory resolution. The International Journal of Biochemistry & Cell Biology 42(4): 524-528. doi: 10.1016/j.biocel.2009.12.013
  28. Kawamata H, Ochiai H, Mantani N, Terasawa K (2000) Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264. 7 cells, a murine macrophage cell line. The American Journal of Chinese Medicine 28(2): 217-226. doi: 10.1142/S0192415X0000026X
  29. Yang J, Zhao Y, Shao F (2015) Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Current opinion in immunology 32: 78-83. doi: 10.1016/j.coi.2015.01.007
  30. Masferrer JL, Zweifel BS, Manning PT, Hauser SD, Leahy KM, Smith WG, Isakson PC, Seibert K (1994) Selective inhibition of inducible cyclooxygenase-2 in vivo is anti-inflammatory and nonulcerogenic. Proc. Natl Acad. Sci. USA 91(8): 3228-3232. doi: 10.1073/pnas.91.8.3228
  31. Seo WG, Pae HO, Oh GS, Chai KY, Yun YG, Kwon TO, Chung TH (2000) Inhibitory effect of ethyl acetate fraction from Cudrania tricuspidata on the expression of nitric oxide synthase gene in RAW264.7 macrophages stimulated with interferon-γ and lipopolysaccharide. Gen. Pharmacol-Vasc. S 35 (1): 21-28. doi: 10.1016/s0306-3623(01)00086-6
  32. Sung MS, Kim YH, Choi YM, Ham HM, Jeong HS, Lee JS (2011) Anti-Inflammatory Effect of Erigeron annuus L. Flower Extract through Heme Oxygenase-1 Induction in RAW264.7 Macrophages. J Korean Soc Food Sci Nutr 40(11): 1507-1511. doi: 10.3746/jkfn.2011.40.11.1507
  33. Dendorfer U (1996) Molecular biology of cytokines. Artif Org 20: 437-444. doi: 10.1111/j.1525-1594.1996.tb04529.x