DOI QR코드

DOI QR Code

Medicinal aspects of Murraya koenigii mediated silver nanoparticles

  • Mumtaz, Sumaira (Department of Chemistry, University of Agriculture, Agriculture University Road) ;
  • Nadeem, Raziya (Department of Chemistry, University of Agriculture, Agriculture University Road) ;
  • Sarfraz, Raja A. (Department of Chemistry, University of Agriculture, Agriculture University Road) ;
  • Shahid, Muhammad (Department of Biochemistry, University of Agriculture, Agriculture University Road)
  • Received : 2020.05.20
  • Accepted : 2021.10.15
  • Published : 2021.12.25

Abstract

The present work aimed to explore green approach via aqueous leaves extract of Murraya koenigii (ALEMk) for the synthesis of silver nanoparticles (AgNPsMk) in single step. The synthesis process was visualized with a color change and monitored by employing UV/Visible spectroscopy and a clear peak attained at 420 nm confirming the synthesis of AgNPsMk. The possible functional groups present in the extract which participated in the synthesis of AgNPsMk were identified with the help of FTIR spectroscopy. Further characterization using TEM images revealed the spherical shape of AgNPsMk with average particle size of 20 nm displaying well dispersion throughout the solution. Pronounced antioxidant activities of AgNPsMk at increased concentrations observed which evidencing strong radical scavenging ability. Moreover, AgNPsMk exhibited strong antibacterial behavior when tested against bacterial strains of Escherichia coli and Bacillus subtilis. Moving ahead, in vitro cytotoxicity work revealed potent cell viability loss appearing in AU565 and HeLa cancer cell lines on exposure to AgNPsMk at increased concentration. Finally, in vivo assessment carried out inside male Wistar rats indicated non toxic effect on examined liver tissues besides biochemical analysis including bilirubin, alkaline phosphtase (ALP) and serum glutamate pyruvate transaminase (SGPT) which found within the normal range when compared with control. The prior research work profoundly apprises the potential of green synthesized AgNPsMk to play a significant role in biomedical applications and formulations.

Keywords

References

  1. Adur, A.J., Nandini, N. Shilpashree, M.K., Ramya, R. and Srinatha, N. (2018), "Biosynthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry", J. Photochem. Photobiol. B, 183, 30-34. https://doi.org/10.1016/j.jphotobiol.2018.04.020.
  2. Anand, T. and Gokulakrishnan, K. (2012), "Phytochemical analysis of Hybanthus enneaspermus using UV, FTIR and GC-MS", IOSR J. Pharm., 2(3), 520-524. https://doi.org/10.9790/3013-0230520524.
  3. Balashanmugam, P., Durai, P., Balakumaran, M.D., Kalaichelvan, P.T. (2016), "Phytosynthesized gold nanoparticles from C. roxburghii DC. leaf and their toxic effects on normal and cancer cell lines" J. Photochem. Photobiol. B, 165, 163-173. https://doi.org/10.1016/j.jphotobiol.2016.10.013.
  4. Basavegowda, N., Idhayadhulla, A. and Lee, Y.R. (2014), "Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities", Mater. Sci. Eng. C, 43, 58-64. https://doi.org/10.1016/j.msec.2014.06.043.
  5. Benakashani, F., Allafchian, A.R. and Jalali, S.A.H. (2016), "Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity", Karbala Int. J. Modern Sci., 2(4), 251-258. https://doi.org/10.1016/j.kijoms.2016.08.004.
  6. Bindhu, M.R. and Umadevi, M. (2014), "Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles", Spectrochim. Acta A, 121, 596-604. https://doi.org/10.1016/j.saa.2013.11.019.
  7. Chaloupka, K., Malam, Y. and Seifalian, A.M. (2010), "Nanosilver as a new generation of nanoproduct in biomedical applications", Trend Biotechnol., 28(11), 580-588. https://doi.org/10.1016/j.tibtech.2010.07.006.
  8. Geetanjali, M.S. and Pawar, K.D. (2018), "Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities", Colloid Surface B, 164, 210-217. https://doi.org/10.1016/j.colsurfb.2018.01.044.
  9. Gupta, R.S. and Singh, D. (2007), "Protective nature of Murraya Koenigii leaves against hepatosupression through antioxidant status in experimental rats", Pharmacologyonline, 1(2), 232-242.
  10. Ito, C., Itoigawa, M., Nakao, K., Murata, T., Tsuboi, M. and Kaneda, N. (2006), "Induction of apoptosis by carbazole alkaloids isolated from Murraya koenigii", Phytomedicine, 13(5), 359-365. https://doi.org/10.1016/j.phymed.2005.03.010.
  11. Jain, V., Momin, M. and Laddha, K. (2012), "Murraya Koenigii: An updated review", Int. J. Ayurvedic Herb Med., 2, 607-627.
  12. Javed, R., Ahmed, M., Haq, I.U., Nisa, S. and Zia, M. (2017), "PVP and PEG doped CuO nanoparticles are more biologically active: Antibacterial, antioxidant, antidiabetic and cytotoxic perspective", Mater. Sci. Eng. C, 79, 108-115. https://doi.org/10.1016/j.msec.2017.05.006.
  13. Jeyaraj, M., Sathishkumar, G., Sivanandhan, G., Ali, D.M., Rajesh, M., Arun, R., Kapildev, G., Manickavasagam, M., Thajuddin, N., Premkumar, K. and Ganapathi, A. (2013), "Biogenic silver nanoparticles for cancer treatment: Anexperimental report", Colloid Surface B, 106, 86-92. https://doi.org/10.1016/j.colsurfb.2013.01.027.
  14. Kanipandian, N., Kannan, S. Ramesh, R. Subramanian, P. and Thirumurugan, R. (2014), "Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier", Mater. Res. Bull., 49, 494-502. https://doi.org/10.1016/j.materresbull.2013.09.016.
  15. Karthick, V., Kumar, V.G., Dhas, T.S., Singaravelu, G., Sadiq, A.M. and Govindaraju, K. (2014), "Effect of biologically synthesized gold nanoparticles onalloxan-induced diabetic rats: An in vivo approach", Colloid Surface B, 122, 505-511. https://doi.org/10.1016/j.colsurfb.2014.07.022.
  16. Liu, Y.S., Chang, Y.C. and Chen, H.H. (2018), "Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants", J. Food Drug Anal., 26(2), 649-656. https://doi.org/10.1016/j.jfda.2017.07.005.
  17. Lone, A.A., Ganai, S.A., Ahanger, R.A., Bhat, H.A., Bhat, T.A. and Wani, I.A. (2013), "Free radicals and antioxidants: Myths, facts and mysteries", Afr. J. Pure Appl. Chem., 7, 91-113. https://doi.org/10.5897/AJPAC12.074.
  18. Makarov, V.V., Love, A.J., Sinitsyn, O.V., Makarov, S.S., Yaminsky, I.V. and Taliansky, M.E. (2014), "Green nanotechnologies: Synthesis of metal nanoparticles using plants", Acta Naturae, 6(1), 35-44. https://doi.org/10.32607/20758251-2014-6-1-35-44
  19. Mittal, A.K., Tripathy, D., Choudhary, A., Aili, P.K., Chatterjee, A., Singh, I.P. and Banerjee, U.C. (2015), "Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. exHook. and its therapeutic evaluation as anticancer and antimicrobial agent", Mater. Sci. Eng. C, 53, 120-127. https://doi.org/10.1016/j.msec.2015.04.038.
  20. Mohanty, A.S. and Jena, B.S. (2017), "Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using Dillenia indica bark extract", J. Colloid Interf. Sci., 496, 513-521. https://doi.org/10.1016/j.jcis.2017.02.045.
  21. Omer, N., Rohilla, A., Rohilla, S. and Kushnoor, A. (2012), "Nitric Oxide: Role in human biology", Int. J. Pharm. Sci. Drug Res., 4(2), 105-109.
  22. Pan, T.L., Wang, P.W., Al-Suwayeh, S.A., Huang, Y.J. and Fang, J.Y. (2012), "Toxicological effects of cationic nanobubbles on the liver and kidneys: Biomarkers for predicting the risk", Food Chem. Toxicol., 50(11), 3892-3901. https://doi.org/10.1016/j.fct.2012.07.005.
  23. Patidar, D.K. (2011), "Antiulcer activity of aqueous extract of Murraya koenigii in albino rats", Int. J. Pharm. Bio Sci., 2(1), 524-529.
  24. Pethakamsetty, L., Kothapenta, K., Nammi, H.R., Ruddaraju, L.K., Kollu, P., Yoon, S.G. and Pammi, S.V.N. (2017), "Green synthesis, characterization and antimicrobial activity of silver nanoparticles using methanolic root extracts of Diospyros sylvatica", J. Environ. Sci., 55, 157-163. https://doi.org/10.1016/j.jes.2016.04.027.
  25. Pinto, R.J.B., Lucas, J.M.F., Madalena, P.M., Santos, S.A.O., Silvestre, A.J.D., Marques, P.A.A.P. and Freire, C.S.R. (2017), "Demystifying the morphology and size control on the biosynthesis of gold nanoparticles using Eucalyptus globulus bark extract", Ind. Crop Prod., 105, 83-92. https://doi.org/10.1016/j.indcrop.2017.05.003
  26. Pirtarighat, S., Ghannadnia, M. and Baghshahi, S. (2019), "Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment", J. Nanostruct. Chem., 9 1-9. https://doi.org/10.1007/s40097-018-0291-4.
  27. Prabhakar, R., Samadder, S.R. and Jyotsana, (2017), "Aquatic and terrestrial weed mediated synthesis of iron nanoparticles for possible application in wastewater remediation", J. Clean. Prod., 168, 1201-1210. https://doi.org/10.1016/j.jclepro.2017.09.063.
  28. Puig, T., Aguilar, H., Cufi1, S., Oliveras, G., Turrado, C., Gutierrez, S.O., Benhamu, B., Rodriguez, M.L.L., Urruticoechea, A. and Colomer, R. (2011), "A novel inhibitor of fatty acid synthase shows activity against HER2+ breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines", Breast Cancer Res., 13(6), 1-13. https://doi.org/10.1186/bcr3077.
  29. Rahman, M.M. and Gray, A.I. (2005), "A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity", Phytochemistry, 66, 1601-1606. https://doi.org/10.1016/j.phytochem.2005.05.001.
  30. Rajan, A., Rajan, A.R. and Philip, D. (2017), "Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities", Open Nano, 2, 1-8. https://doi.org/10.1016/j.onano.2016.11.002.
  31. Rajesh, K.M., Ajitha, B., Reddy, Y.A.K., Suneetha, Y. and Reddy, P.S. (2018), "Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties", Optik, 154, 593-600. https://doi.org/10.1016/j.ijleo.2017.10.074.
  32. Ramar, M., Manikandan, B., Raman, T., Arunagirinathan, K., Prabhu, N.M., Basu, M.J., Perumal, M., Palanisamy, S. and Munusamy, A. (2015), "Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities" Spectrochim. Acta A, 138, 120-129. https://doi.org/10.1016/j.saa.2014.10.043.
  33. Ramesh, A.V., Devi, D.R., Battu, G.R. and Basavaiah, K. (2018), "A Facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. for catalytic, antioxidant and antibacterial applications", South Afr. J. Chem. Eng., 26, 25-34. https://doi.org/10.1016/j.sajce.2018.07.001.
  34. Rasheed, T., Bilal, M., Iqbal, H.M.N. and Li, C. (2017), "Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications", Colloid Surface B, 158, 408-415. https://doi.org/10.1016/j.colsurfb.2017.07.020.
  35. Reddy, N.J., Vali, D.N., Rani, M. and Rani, S.S. (2014), "Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit", Mater. Sci. Eng., 34, 115-122. https://doi.org/10.1016/j.msec.2013.08.039.
  36. Ribeiro, A.B., Chiste, R.C., Freitas, M., da Silva, A.F., Visentainer, J.V. and Fernandes, E. (2014), "Psidium cattleianum fruit extracts are efficient in vitro scavengers of physiologically relevant reactive oxygen and nitrogen species", Food Chem., 165, 140-148. https://doi.org/10.1016/j.foodchem.2014.05.079.
  37. Rojas, J.M., Gavilan, H., Dedo, V.D., Sorolla, E.L., Ortega, L.S., Silva, G.B.D., Costo, R., Yague, S.P., Talelli, M., Marciello, M., Morales, M.P., Barber, D.F. and Gutierrez, L. (2017), "Time-course assessment of the aggregation and metabolization of magnetic nanoparticles", Acta Biomater., 58, 181-195. https://doi.org/10.1016/j.actbio.2017.05.047.
  38. Rolim, W.R., Pelegrino, M.T., Lima, B.D.A., Ferraz, L.S., Costa, F.N., Bernardes, J.S., Rodiguesa, T. and Brocchi, M. (2019), "Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity", Appl. Surf. Sci., 463, 66-74. https://doi.org/10.1016/j.apsusc.2018.08.203.
  39. Shah, K.J. and Juvekar, A.R. (2006), "Positive inotropic effect of Murraya koenigii (Linn.) Spreng extract on an isolated perfused frog heart", Indian J. Exp. Biol., 44, 481-484.
  40. Singh, S., More, P.K. and Mohan, S.M. (2014), "Floral composition and taxonomy of mangroves of Andaman and Nicobar Islands", Indian J. Sci. Res., 43(6), 1037-1050.
  41. Srinivasan, K. (2005), "Plant foods in the management of diabetes mellitus: spices as beneficial antidiabetic food adjuncts", Int. J. Food Sci. Nutr., 56(6), 399-414. https://doi.org/10.1080/09637480500512872.
  42. Sudha, A., Jeyakanthan, J. and Srinivasan, P. (2017), "Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects", Resour. Efficient Technol., 3(4), 506-515. https://doi.org/10.1016/j.reffit.2017.07.002.
  43. Thakkar, K.N., Mhatre, S.S. and Parikh, R.Y. (2010), "Biological synthesis of metallic nanoparticles", Nanomed. Nanotechnol. Biol. Med., 6(2), 257-262. https://doi.org/10.1016/j.nano.2009.07.002.
  44. Uddin, I., Ahmad, K., Khan, A.A. and Kazmi, M.A. (2017), "Synthesis of silver nanoparticles using Matricaria recutita (Babunah) plant extract and its study as mercury ions sensor", Sens. Bio-Sens Res., 16, 62-67. https://doi.org/10.1016/j.sbsr.2017.11.005.
  45. Venkatesan, J., Lee, J.Y., Kang, D.S., Anil, S., Kim, S.K., Shim, M.S., and Kim, D.G. (2017), "Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles", Int. J. Biol. Macromol., 98, 515-525. https://doi.org/10.1016/j.ijbiomac.2017.01.120.
  46. Xie, J.T., Chang, W.T., Wang, C.Z., Mehendale, S.R., Li, J. and Ambihaipahar, R. (2006), "Murraya koenigii reduces blood cholesterol and glucose level in ob/ob mice", Am. J. Chinese Med., 34(2), 279-284. https://doi.org/10.1142/S0192415X06003825.