DOI QR코드

DOI QR Code

A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls

  • Timesli, Abdelaziz (Hassan II University of Casablanca, National Higher School of Arts and Crafts (ENSAM CASABLANCA), AICSE Laboratory)
  • Received : 2021.05.30
  • Accepted : 2021.08.17
  • Published : 2021.12.25

Abstract

This model is proposed to describe the buckling behavior of Carbon Nanotubes (CNTs) embedded in an elastic medium taking into account the combined effects of the magnetic field, the temperature, the nonlocal parameter, the number of walls. Using Eringen's nonlocal elasticity theory, thin cylindrical shell theory and Van der Waal force (VdW) interactions, we develop a system of partial differential equations governing the buckling response of CNTs embedded on Winkler, Pasternak, and Kerr foundations in a thermal-magnetic environment. The pre-buckling stresses are obtained by applying airy's stress function and an adjacent equilibrium criterion. To estimate the nonlocal critical buckling load of CNTs under the simultaneous effects of the magnetic field, the temperature change, and the number of walls, an optimization technique is proposed. Furthermore, analytical formulas are developed to obtain the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. These formulas take into account VdW interactions between adjacent tubes and the effect of terms involving differences in tube radii generally neglected in the derived expressions of the critical buckling load published in the literature. Most scientific research on modeling the effects of magnetic fields is based on beam theories, this motivation pushes me to develop a cylindrical shell model for studying the effect of the magnetic field on the static behavior of CNTs. The results show that the magnetic field has significant effects on the static behavior of CNTs and can lead to slow buckling. On the other hand, thermal effects reduce the critical buckling load. The findings in this work can help us design of CNTs for various applications (e.g. structural, electrical, mechanical and biological applications) in a thermal and magnetic environment.

Keywords

References

  1. Ajiki, H. and Ando, T. (1996), "Energy Bands of Carbon Nanotubes in Magnetic Fields", J. Phys. Soc. Japan, 65(2), 505-514. https://doi.org/10.1143/JPSJ.65.505.
  2. Al-Furjan, M.S.H., Habibi, M., Ni, J., Jung, D.W., and Tounsi, A. (2020a), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01200-x
  3. Al-Furjan, M.S.H., Habibi, M., Rahimi, A., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020b), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.
  4. Al-Furjan, M.S.H., Habibi, M., Jung, D.w., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020c), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8.
  5. Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020d), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.
  6. Al-Furjan, M.S.H., Hatami, A., Habibi, M., Shan, L. and Tounsi, A. (2021), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
  7. Amara, K., Youb, O., Bouazza, M., Tounsi, A. and El Abbas, A.B. (2014), "Influence of temperature change on column Buckling of double walled carbon nanotubes using different theories", Energy Procedia, 50, 634-641. https://doi.org/10.1016/j.egypro.2014.06.078.
  8. Aminikhah, H. and Hemmatnezhad, M. (2011), "Nonlinear vibrations of multiwalled carbon nanotubes under various boundary conditions", Int. J. Differ. Equ., 2011, 343576. https://doi.org/10.1155/2011/343576.
  9. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S., and Tounsi, A., (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01382-y.
  10. Arda, M. and Aydogdu, M. (2018), "Longitudinal Magnetic Field Effect on Torsional Vibration of Carbon Nanotubes", Mater. Horiz., 49(2), 304-313. https://doi.org/10.22059/jcamech.2018.269982.344.
  11. Asghar, S., Naeem, M.N., Hussain, M.,Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  12. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. http://doi.org/10.12989/cac.2019.24.6.579.
  13. Bao, W.X., Zhu, C.C. and Cui, W.Z. (2004), "Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics", Physica B, 352(1), 156-163. https://doi.org/10.1016/j.physb.2004.07.005.
  14. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A.J., Bourada, F., Mahmoud, S.R., Bedia, E.A.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. http://doi.org/10.12989/scs.2020.34.5.643
  15. Bellucci, S., Gonzalez, J., Guinea, F., Onorato, P. and Perfetto, E. (2007), "Magnetic field effects in carbon nanotubes", J. Condens. Matter Phys., 19(39), 395017. https://doi.org/10.1143/JPSJ.65.505.
  16. Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concr., 26(3), 213-226. http://doi.org/10.12989/cac.2020.26.3.213.
  17. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.M. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.
  18. Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. http://doi.org/10.12989/anr.2019.7.5.351.
  19. Bourada, F., Bousahla, A.A., Tounsi, A.J., Bedia, E.A.A, Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concr., 25(6), 485-495. http://doi.org/10.12989/cac.2020.25.6.485.
  20. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A.J., Algarni, A., Bedia, E.A.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concr., 25(2), 155-166. http://doi.org/10.12989/cac.2020.25.2.155.
  21. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. http://doi.org/10.12989/anr.2019.7.3.191.
  22. Brush, D. and Almroth, B. (1975), Buckling of Bars, Plates and Shells, McGraw-Hill, New York, U.S.A.
  23. Calvert, P. (1999), "A recipe for strength", Nature, 399(6733), 210-211. https://doi.org/10.1038/20326.
  24. Cao, Q., Fan, Q., Chen, Q., Liu, C., Han, X. and Li, L. (2020), "Recent advances in manipulation of micro- and nano-objects with magnetic fields at small scales", Mater. Horiz., 7(3), 638-666. https://doi.org/10.1039/C9MH00714H
  25. Deng, L., Young, R.J., Kinloch, I.A., Sun, R., Zhang, G., Noe, L. and Monthioux, M. (2014), "Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy", Appl. Phys. Lett., 104(5), 051907. http://doi.org/10.1063/1.4864056.
  26. Donnell, L.H. (1934), "Stability of thin-walled tubes under torsion", TR-479; N.A.C.A.
  27. Ebrahimi, F., Hosseini, S.H.S., Singhal, A. (2020), "A comprehensive review on the modeling of smart piezoelectric nanostructures", Struct. Eng. Mech., 74(5), 611-633. http://doi.org/10.12989/sem.2020.74.5.611.
  28. Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  29. Eringen, A.C. (1972b), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.
  30. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  31. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York, U.S.A.
  32. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  33. Falvo, M.R., Clary, G.J., Taylor, R.M., Chi, V. and Brooks, F.P. (1997), "Bending and buckling of carbon nanotubes under large strain", Nature, 389(6651), 582-584. https://doi.org/10.1038/39282.
  34. Fedorov, G., Tselev, A., Jimenez, D., Latil, S., Kalugin, N.G., Barbara, P., Smirnov, D. and Roche, S. (2007), "Magnetically induced field effect in carbon nanotube devices", Nano Lett., 7(4), 960-964. https://doi.org/10.1021/nl063029v.
  35. Fu, Y.M., Hong, J.W. and Wang, X.Q. (2006), "Analysis of nonlinear vibration for embedded carbon nanotubes", J. Sound Vib., 296(4-5), 746-756. https://doi.org/10.1016/j.jsv.2006.02.024.
  36. Gul, U. and Aydogdu, M. (2018), "Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics", Compos. Part B Eng., 137, 60-73. https://doi.org/10.1016/j.compositesb.2017.11.005.
  37. Heidari, F., Taheri, K., Sheybani, M., Janghorban, M., and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533
  38. Hernandez, E., Goze, C., Bernier P. and Rubio, A. (1998), "Elastic properties of C and BxCyNz composite nanotubes", Phys. Rev. Lett., 80(20), 4502-4505. https://doi.org/10.1103/PhysRevLett.80.4502.
  39. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020), "Simulating vibrations of vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
  40. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. http://doi.org/10.12989/anr.2019.7.6.431.
  41. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  42. Iijima, S., Brabec, C., Maiti, A. and Bernholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys., 104(5), 2089-2092. https://doi.org/10.1063/1.470966.
  43. Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: An analytical approach", Eur. Phys. J. Plus, 135(2), 164. https://doi.org/10.1140/epjp/s13360-020-00176-3.
  44. Jiang, J.W., Wang, J.S. and Li, B. (2009), "Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green's function approach", Phys. Rev. B., 80(20), 205429. http://doi.org/10.1103/PhysRevB.80.205429.
  45. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
  46. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J Braz. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0.
  47. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
  48. Kuzumaki, T., Miyazawa, K., Ichinose, H. and Ito, K. (1998), "Processing of carbon nanotube reinforced aluminum composites", J. Mater. Res., 13(9), 2445-2449. https://doi.org/10.1557/JMR.1998.0340.
  49. Lee, D.W., Kim, S.H., Kozlov M.E., Lepro, X., Baughman, R.H. and Kim, S.J. (2018), "Magnetic torsional actuation of carbon nanotube yarn artificial muscle", RSC Advances, 8(31), 17421-17425. https://doi.org/10.1039/C8RA01040D.
  50. Liew, K.M., Wong, C.H., He, X.Q., Tan, M.J. and Meguid, S.A. (2004), "Nanomechanics of single and multiwalled carbon nanotubes", Phys. Rev. B, 69(11), 115429. https://doi.org/10.1103/PhysRevB.69.115429
  51. Malikan, M. (2020), "On the plastic buckling of curved carbon nanotubes", Theor. App. Mech. Lett., 10(1), 46-56. https://doi.org/10.1016/j.taml.2020.01.004.
  52. Malikan, M. and Eremeyev, V.A. (2020), "Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method", Mater. Res. Express, 7(2), 025005. https://doi.org/10.1088/2053-1591/ab691c.
  53. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A.A., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. http://doi.org/10.12989/anr.2020.8.4.293.
  54. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020) "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4), 2823-2836. https://doi.org/10.1007/s00366-020-00976-2.
  55. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A.J. and Mahmoud, S.R. (2019) "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. http://doi.org/10.12989/scs.2019.32.5.595.
  56. Ponnusamy, P. and Amuthalakshmi, A. (2015), "Influence of thermal and magnetic field on vibration of double walled carbon nanotubes using nonlocal Timoshenko beam theory", Procedia Mater. Sci., 10, 243-253. https://doi.org/10.1016/j.mspro.2015.06.047.
  57. Rai, R.S. and Bajpai, V. (2021), "Recent advances in ZnO nanostructures and their future perspective", Adv. Nano Res., 11(1), 37-54. https://doi.org/10.12989/anr.2021.11.1.037.
  58. Rahmani, R. and Antonov, M. (2019), "Axial and torsional buckling analysis of single- and multi-walled carbon nanotubes: finite element comparison between armchair and zigzag types", SN Appl. Sci., 1(9), 1134. https://doi.org/10.1007/s42452-019-1190-0.
  59. Ru, C.Q. (2000), "Column buckling of multiwall carbon nanotubes with interlayer radial displacement", Phys. Rev. B., 62(24), 16962-16967. https://doi.org/10.1103/PhysRevB.62.16962.
  60. Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A.J., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., 37(6), 695-709. http://doi.org/10.12989/scs.2020.37.6.695.
  61. Sanchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A., Ordejon, P. (1999), "Ab-initio structural, elastic, and vibrational properties of carbon nanotubes", Phys. Rev. B, 59(19), 12678-12688. https://doi.org/10.1103/PhysRevB.59.12678.
  62. Schadler, L.S., Giannaris, S.C. and Ajayan, P.M. (2018), "Load transfer in carbon nanotubes epoxy composites", Appl. Phys. Lett., 73(26), 3842-3844. https://doi.org/10.1063/1.122911.
  63. Shahsavari, D., Karami, B. and Mansouri, S. (2018), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech. A Solids, 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004.
  64. Sobamowo, M.G., Akanmu, J.O., Adeleye, O.A., Akingbade, S.A. and Yinusa, A.A. (2021), "Coupled effects of magnetic field, number of walls, geometric imperfection, temperature change, and boundary conditions on nonlocal nonlinear vibration of carbon nanotubes resting on elastic foundations", Force. Mech., 3, 100010. https://doi.org/10.1016/j.finmec.2021.100010.
  65. Soleimani-Javid, Z., Arshid, E., Khorasani, M., Amir, S. and Tounsi, A. (2021), "Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions", Adv. Nano Res., 10(5), 449-460. https://doi.org/10.12989/anr.2021.10.5.449.
  66. Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M., Khan, H.U. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concr., 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245
  67. Timesli, A. (2020a), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053
  68. Timesli, A. (2020b), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9(2), 69-82. https://doi.org/10.12989/anr.2020.9.2.069.
  69. Timesli, A. (2020c), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2(3), 247. https://doi.org/10.1007/s42452-020-2182-9.
  70. Timesli, A. (2021), "Analytical modeling of buckling behavior of porous FGM cylindrical shell embedded within an elastic foundation", Gazi Univ. J. Sci., 1(1). https://doi.org/10.35378/gujs.860783.
  71. Timesli, A., Braikat, B., Jamal, M. and Damil, N. (2017), "Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression", Comptes Rendus Mecanique, 345(2), 158-168. https://doi.org/10.1007/s42452-020-2182-9.
  72. Van Vinh, P., Tounsi, A. (2021), "The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01475-8.
  73. Wang, H., Zandi, Y., Gholizadeh, M., and Issakhov, A. (2021), "Buckling of porosity-dependent bi-directional FG nanotube using numerical method", Adv. Nano Res., 10(5), 493-507. http://doi.org/10.12989/anr.2021.10.5.493.
  74. Wu, C.P., Chen, Y.H., Hong, Z.L. and Lin, C.H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.
  75. Xie, B., Li, Q., Zeng, K, Sahmani, S. and Madyira, D.M. (2020), "Instability analysis of silicon cylindrical nanoshells under axial compressive load using molecular dynamics simulations", Microsyst. Technol., 26(12), 3753-3764. https://doi.org/10.1007/s00542-020-04851-4.
  76. Yacobson, B.I., Brabec, C.J. and Bernhole, J. (1996), "Nanomechanics of carbon nanotubes: instabilities beyound linear response", Phys. Rev. Lett., 76(14), 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511.
  77. Yan, X., Itoh, T., Kitahama, Y., Suzuki, T., Sato, H., Miyake, T. and Ozaki, Y. (2012), "A Raman spectroscopy study on single-wall carbon nanotube/polystyrene nanocomposites: Mechanical compression transferred from the polymer to single-wall carbon nanotubes", J. Phys. Chem. C, 116(33), 17897-17903. https://doi.org/10.1021/jp303509g.
  78. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
  79. Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A.J., Benrahou, K.H. and Mahmoud, S.R. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. http://doi.org/10.12989/sem.2021.78.2.117.
  80. Zhou, L., Cheny, F. and Zhao, Z. (2019), "Subharmonic bifurcation and chaos of a carbon nanotube supported by a Winkler and Pasternak foundation", Int. J. Mod. Phys. B, 33(19), 1950207. https://doi.org/10.1142/S0217979219502072.