DOI QR코드

DOI QR Code

비만, 폐쇄성 수면무호흡증과 대사장애

Obesity, Obstructive Sleep Apnea, and Metabolic Dysfunction

  • 김진관 (중원대학교 임상병리학과) ;
  • 표상신 (중원대학교 임상병리학과) ;
  • 윤대위 (중원대학교 임상병리학과)
  • Kim, Jinkwan (Department of Biomedical Laboratory Science, Jungwon University) ;
  • Pyo, Sang Shin (Department of Biomedical Laboratory Science, Jungwon University) ;
  • Yoon, Dae Wui (Department of Biomedical Laboratory Science, Jungwon University)
  • 투고 : 2021.09.15
  • 심사 : 2021.11.11
  • 발행 : 2021.12.31

초록

수면은 필수적인 생리적 기능일 뿐만 아니라 인간의 성장, 성숙 및 전반적인 건강을 증진시키는 데 중요한 역할을 한다. 수면과 수면 장애가 대사성 질환에 미치는 영향에 대한 관심이 높아지고 있다. 폐쇄성 수면무호흡증은 일반적인 건강 문제이며, 지난 10년 동안 비만율의 증가로 인해 더 두드러진 대사 질환과 함께 폐쇄성 수면무호흡증의 유병률이 현저하게 증가했다. 폐쇄성 수면무호흡증에 의한 대사성 질환을 유발하는 근본적인 메커니즘은 다인성일 가능성이 높으며, 완전히 밝혀지지 않고 있지만, 염증과 산화 스트레스의 활성화와 식욕 조절 호르몬의 조절 장애는 폐쇄성 수면무호흡증 환자에게 나타나는 대사 기능 장애와 비만의 중요한 병리 생리학적 성분으로 나타났다. 본 연구에서는 폐쇄성 수면무호흡증과 대사질환의 연관성에 대한 연구 현황과 폐쇄성 수면무호흡증이 이러한 질병을 유발하는 병리생리학적 메커니즘에 대해 검토하고자 한다. 이를 통해 폐쇄성 수면무호흡증과 비만, 그리고 폐쇄성 수면무호흡증과 대사 기능 장애 사이의 잠재적인 상호작용을 이해할 수 있다.

Sleep plays an important role in maintaining overall human health. There is increasing interest regarding the impact of sleep related disorders on metabolic diseases. Obstructive sleep apnea (OSA) is a common health problem, and in the last decade, the emergence of increasing obesity rates has further led to a remarkable increase in the prevalence of OSA, along with more prominent metabolic diseases. Obesity is the strongest risk factor for OSA. However, OSA is also known to cause obesity, suggesting an interaction between OSA and obesity. Although the underlying mechanisms leading to OSA-induced metabolic diseases are probably multi-factorial and are yet to be fully elucidated, the activation of inflammation and oxidative stress and the dysregulation of appetite-regulating hormones have emerged as important pathophysiological components of metabolic dysfunction and obesity observed in patients with OSA. Here, we will review the current state of research regarding the association of OSA with metabolic diseases and the possible pathophysiological mechanisms by which OSA could lead to such diseases. This will enhance our understanding of the potential interactions between OSA and obesity and between OSA and metabolic dysfunction.

키워드

과제정보

This work was supported by the Jungwon University Research Grant (2019-018).

참고문헌

  1. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6-10. https://doi.org/10.1016/j.metabol.2018.09.005
  2. Shin HY, Kang HT. Recent trends in the prevalence of underweight, overweight, and obesity in korean adults: the Korean national health and nutrition examination survey from 1998 to 2014. J Epidemiol. 2017;27:413-419. https://doi.org/10.1016/j.je.2016.08.014
  3. Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70-81. https://doi.org/10.1016/j.smrv.2016.07.002
  4. Kim J, In K, Kim J, You S, Kang K, Shim J, et al. Prevalence of sleep-disordered breathing in middle-aged korean men and women. Am J Respir Crit Care Med. 2004;170:1108-1113. https://doi.org/10.1164/rccm.200404-519OC
  5. Dong JY, Zhang YH, Qin LQ. Obstructive sleep apnea and cardiovascular risk: meta-analysis of prospective cohort studies. Atherosclerosis. 2013;229:489-495. https://doi.org/10.1016/j.atherosclerosis.2013.04.026
  6. Hirotsu C, Haba-Rubio J, Togeiro SM, Marques-Vidal P, Drager LF, Vollenweider P, et al. Obstructive sleep apnoea as a risk factor for incident metabolic syndrome: a joined episono and hypnolaus prospective cohorts study. Eur Respir J. 2018;52. https://doi.org/10.1183/13993003.01150-2018
  7. Guideline fifteen: Guidelines for polygraphic assessment of sleep-related disorders (polysomnography). American electroencephalographic society. J Clin Neurophysiol. 1994;11:116-24 https://doi.org/10.1097/00004691-199401000-00016
  8. Chervin RD, Guilleminault C. Obstructive sleep apnea and related disorders. Neurol Clin. 1996;14:583-609. https://doi.org/10.1016/s0733-8619(05)70275-9
  9. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The report of an american academy of sleep medicine task force. Sleep. 1999;22:667-89. https://doi.org/10.1093/sleep/22.5.667
  10. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet. 1981;1:862-865. https://doi.org/10.1016/s0140-6736(81)92140-1
  11. Practice parameters for the treatment of snoring and obstructive sleep apnea with oral appliances. American sleep disorders association. Sleep. 1995;18:511-3. https://doi.org/10.1093/sleep/18.6.511
  12. Schmidt-Nowara WW, Meade TE, Hays MB. Treatment of snoring and obstructive sleep apnea with a dental orthosis. Chest. 1991;99:1378-1385. https://doi.org/10.1378/chest.99.6.1378
  13. Young T, Skatrud J, Peppard PE. Risk factors for obstructive sleep apnea in adults. Jama. 2004;291:2013-2016. https://doi.org/10.1001/jama.291.16.2013
  14. Punjabi NM, Shahar E, Redline S, Gottlieb DJ, Givelber R, Resnick HE. Sleep-disordered breathing, glucose intolerance, and insulin resistance: the sleep heart health study. Am J Epidemiol. 2004;160:521-30. https://doi.org/10.1093/aje/kwh261
  15. Chang AM, Halter JB. Aging and insulin secretion. Am J Physiol Endocrinol Metab. 2003;284:E7-12. https://doi.org/10.1152/ajpendo.00366.2002
  16. Resnick HE, Redline S, Shahar E, Gilpin A, Newman A, Walter R, et al. Diabetes and sleep disturbances: findings from the sleep heart health study. Diabetes Care. 2003;26:702-709. https://doi.org/10.2337/diacare.26.3.702
  17. Marshall NS, Wong KKH, Phillips CL, Liu PY, Knuiman MW, Grunstein RR. Is sleep apnea an independent risk factor for prevalent and incident diabetes in the busselton health study? Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine. 2009;5:15-20. https://doi.org/10.5664/jcsm.27387
  18. Reichmuth KJ, Austin D, Skatrud JB, Young T. Association of sleep apnea and type ii diabetes: a population-based study. Am J Respir Crit Care Med. 2005;172:1590-5. https://doi.org/10.1164/rccm.200504-637OC
  19. Mahmood K, Akhter N, Eldeirawi K, Onal E, Christman JW, Carley DW, et al. Prevalence of type 2 diabetes in patients with obstructive sleep apnea in a multi-ethnic sample. J Clin Sleep Med. 2009;5:215-221. https://doi.org/10.5664/jcsm.27489
  20. Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB, et al. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 2009;32:1017-1019. https://doi.org/10.2337/dc08-1776
  21. Lindberg E, Theorell-Haglow J, Svensson M, Gislason T, Berne C, Janson C. Sleep apnea and glucose metabolism: a long-term follow-up in a community-based sample. Chest. 2012;142:935-942. https://doi.org/10.1378/chest.11-1844
  22. World Health O. Waist circumference and waist-hip ratio: report of a who expert consultation, geneva, 8-11 december 2008. Geneva: World Health Organization; 2011
  23. Ashwell M, Gibson S. Waist to height ratio is a simple and effective obesity screening tool for cardiovascular risk factors: analysis of data from the british national diet and nutrition survey of adults aged 19-64 years. Obes Facts. 2009;2:97-103. https://doi.org/10.1159/000203363
  24. Rubinstein I, Colapinto N, Rotstein LE, Brown IG, Hoffstein V. Improvement in upper airway function after weight loss in patients with obstructive sleep apnea. American Review of Respiratory Disease. 1988;138:1192-1195. https://doi.org/10.1164/ajrccm/138.5.1192
  25. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011; 11:85-97. https://doi.org/10.1038/nri2921
  26. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43:S99-s112. https://doi.org/10.1002/hep.20973
  27. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the united states, 1999-2004. Jama. 2006;295:1549-1555. https://doi.org/10.1001/jama.295.13.1549
  28. Ford ES. C-reactive protein concentration and cardiovascular disease risk factors in children. Circulation. 2003;108:1053-1058. https://doi.org/10.1161/01.CIR.0000080913.81393.B8
  29. Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis. Circulation Research. 2005;96:1042-1052. https://doi.org/10.1161/01.RES.0000165803.47776.38
  30. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26:439-451. https://doi.org/10.1210/er.2005-0005
  31. Matsuzawa Y. Therapy insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat Clin Pract Cardiovasc Med. 2006;3:35-42. https://doi.org/10.1038/ncpcardio0380
  32. Suganami T, Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010;88:33-39. https://doi.org/10.1189/jlb.0210072
  33. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, but not obese, fat is enriched for a unique population of regulatory t cells that affect metabolic parameters. Nat Med. 2009;15:930-939. https://doi.org/10.1038/nm.2002
  34. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, et al. Disruption of the clock components clock and bmal1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466:627-631. https://doi.org/10.1038/nature09253
  35. Van Cauter E, Spiegel K, Tasali E, Leproult R. Metabolic consequences of sleep and sleep loss. Sleep Med. 2008;9 Suppl 1:S23-28. https://doi.org/10.1016/s1389-9457(08)70013-3
  36. Leproult R, Van Cauter E. Role of sleep and sleep loss in hormonal release and metabolism. Endocr Dev. 2010;17:11-21. https://doi.org/10.1159/000262524
  37. Lago R, Gomez R, Lago F, Gomez-Reino J, Gualillo O. Leptin beyond body weight regulation--current concepts concerning its role in immune function and inflammation. Cell Immunol. 2008;252:139-145. https://doi.org/10.1016/j.cellimm.2007.09.004
  38. Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141:846-850. https://doi.org/10.7326/0003-4819-141-11-200412070-00008
  39. Chaput JP, Brunet M, Tremblay A. Relationship between short sleeping hours and childhood overweight/obesity: results from the 'quebec en forme' project. Int J Obes (Lond). 2006;30:1080-1085. https://doi.org/10.1038/sj.ijo.0803291
  40. Jiang F, Zhu S, Yan C, Jin X, Bandla H, Shen X. Sleep and obesity in preschool children. The Journal of Pediatrics. 2009;154: 814-818. https://doi.org/10.1016/j.jpeds.2008.12.043
  41. Spruyt K, Molfese DL, Gozal D. Sleep duration, sleep regularity, body weight, and metabolic homeostasis in school-aged children. Pediatrics. 2011;127:e345-352. https://doi.org/10.1542/peds.2010-0497
  42. Vgontzas AN. Does obesity play a major role in the pathogenesis of sleep apnoea and its associated manifestations via inflammation, visceral adiposity, and insulin resistance? Arch Physiol Biochem. 2008;114:211-223. https://doi.org/10.1080/13813450802364627
  43. Rosmond R, Dallman MF, Bjorntorp P. Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab. 1998;83:1853-1859. https://doi.org/10.1210/jcem.83.6.4843
  44. Vgontzas AN, Bixler EO, Chrousos GP. Sleep apnea is a manifestation of the metabolic syndrome. Sleep Med Rev. 2005;9:211-224. https://doi.org/10.1016/j.smrv.2005.01.006
  45. Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K, Chrousos GP. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. The Journal of Clinical Endocrinology & Metabolism. 1997;82:1313-1316. https://doi.org/10.1210/jcem.82.5.3950
  46. Vgontzas AN, Bixler EO, Chrousos GP. Metabolic disturbances in obesity versus sleep apnoea: the importance of visceral obesity and insulin resistance. J Intern Med. 2003;254:32-44. https://doi.org/10.1046/j.1365-2796.2003.01177.x
  47. Resta O, Foschino-Barbaro MP, Legari G, Talamo S, Bonfitto P, Palumbo A, et al. Sleep-related breathing disorders, loud snoring and excessive daytime sleepiness in obese subjects. Int J Obes Relat Metab Disord. 2001;25:669-675. https://doi.org/10.1038/sj.ijo.0801603
  48. Drager LF, Lopes HF, Maki-Nunes C, Trombetta IC, Toschi-Dias E, Alves MJ, et al. The impact of obstructive sleep apnea on metabolic and inflammatory markers in consecutive patients with metabolic syndrome. PLoS One. 2010;5:e12065. https://doi.org/10.1371/journal.pone.0012065
  49. Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med. 2002;165:677-682. https://doi.org/10.1164/ajrccm.165.5.2104087
  50. Kim NH, Cho NH, Yun CH, Lee SK, Yoon DW, Cho HJ, et al. Association of obstructive sleep apnea and glucose metabolism in subjects with or without obesity. Diabetes Care. 2013;36:3909-3915. https://doi.org/10.2337/dc13-0375
  51. Vagiakis E, Kapsimalis F, Lagogianni I, Perraki H, Minaritzoglou A, Alexandropoulou K, et al. Gender differences on polysomnographic findings in greek subjects with obstructive sleep apnea syndrome. Sleep Med. 2006;7:424-430. https://doi.org/10.1016/j.sleep.2005.12.014
  52. Jordan AS, Wellman A, Edwards JK, Schory K, Dover L, MacDonald M, et al. Respiratory control stability and upper airway collapsibility in men and women with obstructive sleep apnea. J Appl Physiol (1985). 2005;99:2020-2027. https://doi.org/10.1152/japplphysiol.00410.2004
  53. Franco CM, Lima AM, Ataide L, Jr., Lins OG, Castro CM, Bezerra AA, et al. Obstructive sleep apnea severity correlates with cellular and plasma oxidative stress parameters and affective symptoms. J Mol Neurosci. 2012;47:300-310. https://doi.org/10.1007/s12031-012-9738-0
  54. Villa MP, Supino MC, Fedeli S, Rabasco J, Vitelli O, Del Pozzo M, et al. Urinary concentration of 8-isoprostane as marker of severity of pediatric OSAHS. Sleep Breath. 2014;18:723-729. https://doi.org/10.1007/s11325-013-0934-0
  55. Wang N, Khan SA, Prabhakar NR, Nanduri J. Impairment of pancreatic β-cell function by chronic intermittent hypoxia. Exp Physiol. 2013;98:1376-1385. https://doi.org/10.1113/expphysiol.2013.072454
  56. Fang Y, Zhang Q, Tan J, Li L, An X, Lei P. Intermittent hypoxia-induced rat pancreatic β-cell apoptosis and protective effects of antioxidant intervention. Nutrition & Diabetes. 2014;4:e131-e131. https://doi.org/10.1038/nutd.2014.28
  57. Polak J, Shimoda LA, Drager LF, Undem C, McHugh H, Polotsky VY, et al. Intermittent hypoxia impairs glucose homeostasis in c57bl6/j mice: partial improvement with cessation of the exposure. Sleep. 2013;36:1483-1490; 1490a-1490b. https://doi.org/10.5665/sleep.3040
  58. Carreras A, Zhang SX, Almendros I, Wang Y, Peris E, Qiao Z, et al. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice. Endocrinology. 2015;156:437-443. https://doi.org/10.1210/en.2014-1706
  59. Odegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science. 2013;339:172-177. https://doi.org/10.1126/science.1230721
  60. Savransky V, Nanayakkara A, Vivero A, Li J, Bevans S, Smith PL, et al. Chronic intermittent hypoxia predisposes to liver injury. Hepatology. 2007;45:1007-1013. https://doi.org/10.1002/hep.21593
  61. Li J, Bosch-Marce M, Nanayakkara A, Savransky V, Fried SK, Semenza GL, et al. Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1α. Physiological Genomics. 2006;25:450-457. https://doi.org/10.1152/physiolgenomics.00293.2005
  62. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007;8:21-34. https://doi.org/10.1111/j.1467-789X.2006.00270.x
  63. Smith SS, Waight C, Doyle G, Rossa KR, Sullivan KA. Liking for high fat foods in patients with obstructive sleep apnoea. Appetite. 2014;78:185-192. https://doi.org/10.1016/j.appet.2014.03.019
  64. Beebe DW, Miller N, Kirk S, Daniels SR, Amin R. The association between obstructive sleep apnea and dietary choices among obese individuals during middle to late childhood. Sleep Med. 2011;12:797-99. https://doi.org/10.1016/j.sleep.2010.12.020
  65. Ong CW, O'Driscoll DM, Truby H, Naughton MT, Hamilton GS. The reciprocal interaction between obesity and obstructive sleep apnoea. Sleep Med Rev. 2013;17:123-131. https://doi.org/10.1016/j.smrv.2012.05.002
  66. Wang Y, Carreras A, Lee S, Hakim F, Zhang SX, Nair D, et al. Chronic sleep fragmentation promotes obesity in young adult mice. Obesity (Silver Spring). 2014;22:758-762. https://doi.org/10.1002/oby.20616
  67. Hakim F, Wang Y, Carreras A, Hirotsu C, Zhang J, Peris E, et al. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and ptp1b-mediated leptin resistance in male mice. Sleep. 2015;38:31-40. https://doi.org/10.5665/sleep.4320
  68. Farre R, Montserrat JM, Navajas D. Morbidity due to obstructive sleep apnea: insights from animal models. Curr Opin Pulm Med. 2008;14:530-536. https://doi.org/10.1097/mcp.0b013e328312ed76
  69. Gozal D. Sleep, sleep disorders and inflammation in children. Sleep Med. 2009;10 Suppl 1:S12-16. https://doi.org/10.1016/j.sleep.2009.07.003
  70. Lavie L, Lavie P. Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J. 2009;33:1467-1484. https://doi.org/10.1183/09031936.00086608
  71. Valleggi S, Devaraj S, Dasu MR, Jialal I. C-reactive protein adversely alters the protein-protein interaction of the endothelial isoform of nitric oxide synthase. Clin Chem. 2010;56:1345-1348. https://doi.org/10.1373/clinchem.2009.142364
  72. Yokoe T, Minoguchi K, Matsuo H, Oda N, Minoguchi H, Yoshino G, et al. Elevated levels of c-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation. 2003;107:1129-1134. https://doi.org/10.1161/01.cir.0000052627.99976.18
  73. Mehra R, Storfer-Isser A, Kirchner HL, Johnson N, Jenny N, Tracy RP, et al. Soluble interleukin 6 receptor: a novel marker of moderate to severe sleep-related breathing disorder. Archives of Internal Medicine. 2006;166:1725-1731. https://doi.org/10.1001/archinte.166.16.1725
  74. Gozal D, Serpero LD, Sans Capdevila O, Kheirandish-Gozal L. Systemic inflammation in non-obese children with obstructive sleep apnea. Sleep Med. 2008;9:254-259. https://doi.org/10.1016/j.sleep.2007.04.013
  75. Kritchevsky SB, Cesari M, Pahor M. Inflammatory markers and cardiovascular health in older adults. Cardiovasc Res. 2005;66:265-275. https://doi.org/10.1016/j.cardiores.2004.12.026
  76. McNicholas WT. Obstructive sleep apnea and inflammation. Progress in Cardiovascular Diseases. 2009;51:392-399. https://doi.org/https://doi.org/10.1016/j.pcad.2008.10.005
  77. Gozal D, Kheirandish-Gozal L. Cardiovascular morbidity in obstructive sleep apnea: oxidative stress, inflammation, and much more. Am J Respir Crit Care Med. 2008;177:369-375. https://doi.org/10.1164/rccm.200608-1190PP
  78. Dyugovskaya L, Lavie P, Hirsh M, Lavie L. Activated cd8+ t-lymphocytes in obstructive sleep apnoea. European Respiratory Journal. 2005;25:820-828. https://doi.org/10.1183/09031936.05.00103204
  79. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836-843. https://doi.org/10.1056/nejm200003233421202
  80. Lusis AJ. Atherosclerosis. Nature. 2000;407:233-241. https://doi.org/10.1038/35025203
  81. Li AM, Chan MH, Yin J, So HK, Ng SK, Chan IH, et al. C-reactive protein in children with obstructive sleep apnea and the effects of treatment. Pediatr Pulmonol. 2008;43:34-40. https://doi.org/10.1002/ppul.20732
  82. Kheirandish-Gozal L, Capdevila OS, Tauman R, Gozal D. Plasma c-reactive protein in nonobese children with obstructive sleep apnea before and after adenotonsillectomy. J Clin Sleep Med. 2006;2:301-304. https://doi.org/10.5664/jcsm.26589
  83. Guilleminault C, Kirisoglu C, Ohayon MM. C-reactive protein and sleep-disordered breathing. Sleep. 2004;27:1507-1511. https://doi.org/10.1093/sleep/27.8.1507
  84. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated c-reactive protein levels in overweight and obese adults. Jama. 1999;282:2131-2135. https://doi.org/10.1001/jama.282.22.2131
  85. Htoo AK, Greenberg H, Tongia S, Chen G, Henderson T, Wilson D, et al. Activation of nuclear factor kappab in obstructive sleep apnea: a pathway leading to systemic inflammation. Sleep Breath. 2006;10:43-50. https://doi.org/10.1007/s11325-005-0046-6
  86. Ohga E, Tomita T, Wada H, Yamamoto H, Nagase T, Ouchi Y. Effects of obstructive sleep apnea on circulating icam-1, il-8, and mcp-1. J Appl Physiol (1985). 2003;94:179-184. https://doi.org/10.1152/japplphysiol.00177.2002
  87. Ciftci TU, Kokturk O, Bukan N, Bilgihan A. The relationship between serum cytokine levels with obesity and obstructive sleep apnea syndrome. Cytokine. 2004;28:87-91. https://doi.org/10.1016/j.cyto.2004.07.003
  88. Bingol Z, Karaayvaz EB, Telci A, Bilge AK, Okumus G, Kiyan E. Leptin and adiponectin levels in obstructive sleep apnea phenotypes. Biomark Med. 2019;13:865-874. https://doi.org/10.2217/bmm-2018-0293
  89. Badran M, Abuyassin B, Golbidi S, Ayas N, Laher I. Alpha lipoic acid improves endothelial function and oxidative stress in mice exposed to chronic intermittent hypoxia. Oxid Med Cell Longev. 2019;2019:4093018. https://doi.org/10.1155/2019/4093018
  90. Lee SJ, Kim JK. Inflammation and insufficient or disordered sleep. Korean J Clin Lab Sci. 2015;47:97-104. https://doi.org/10.15324/kjcls.2015.47.3.97