과제정보
이 논문은 교육부 및 한국연구재단의 4단계 두뇌한국21 사업(4단계 BK21 사업)으로 지원된 연구임. 이 논문은 행정안전부 '자연재난 정책연계형 기술개발사업'의 지원을 받아 수행된 연구임(2021-MOIS35-003). 이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1A6A3A01087645).
참고문헌
- Abraham, M.T., Satyam, N., Rosi, A., Pradhan, B., and Segoni, S. (2021). "Usage of antecedent soil moisture for improving the performance of rainfall thresholds for landslide early warning." Catena, Vol. 200, No. 105147.
- Berti, M., Martina, M., Franceschini, S., Pignone, S., Simoni, A., and Pizziolo, M. (2012). "Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach." Journal of Geophysical Research: Earth Surface, Vol. 117, No. F04006.
- Bezak, N., Sraj, M., and Mikos, M. (2016). "Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfallinduced landslides." Journal of Hydrology, Vol. 541, pp. 272-284. https://doi.org/10.1016/j.jhydrol.2016.02.058
- Bogaard, T.A., and Greco, R. (2016). "Landslide hydrology: From hydrology to pore pressure." Wiley Interdisciplinary Reviews: Water, Vol. 3, No. 3, pp. 439-459. https://doi.org/10.1002/wat2.1126
- Caine, N. (1980). "The rainfall intensity-duration control of shallow landslides and debris flows." Geografiska Annaler: Series A, Physical Geography, Vol. 62, No. 1/2, pp. 23-27.
- Conrad, J.L., Morphew, M.D., Baum, R.L., and Mirus, B.B. (2021). "HydroMet: A new code for automated objective optimization of hydrometeorological thresholds for landslide initiation." Water, Vol. 13, No. 13.
- Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C.P. (2007). "Rainfall thresholds for the initiation of landslides in central and southern Europe." Meteorology and Atmospheric Physics, Vol. 98, No. 3, pp. 239-267. https://doi.org/10.1007/s00703-007-0262-7
- Heggen, R.J. (2001). "Normalized antecedent precipitation index." Journal of Hydrologic Engineering, Vol. 6, No. 5, pp. 377-381. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:5(377)
- Hong, M., Kim, J., and Jeong, S. (2018). "Rainfall intensity-duration thresholds for landslide prediction in South Korea by considering the effects of antecedent rainfall." Landslides, Vol. 15, No. 3, pp. 523-534. https://doi.org/10.1007/s10346-017-0892-x
- Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., and Yoo, S.H. (2015). "NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG)." Algorithm Theoretical Basis Document (ATBD), NASA, Vol. 4, No. 26.
- Kim, D.-Y., Seo, J.-P., Lee, C.-W., and Woo, C.-S. (2016). "Analysis on the Behaviors of soil water characteristic sensors through rainfall-induced landslide flume experiments." Korean Society of Hazard Mitigation, Vol. 16, No. 6, pp. 209-218.
- Kim, S.-W., Chun, K.-W., Kim, M.-S., Kim, M.-S., Kim, J.-H., and Lee, D.-K. (2013). "Rainfall intensity-duration thresholds for the initiation of a shallow landslide in South Korea." Journal of Korean Society of Forest Science, Vol. 102, No. 3, pp. 463-466.
- Kohler, M.A., and Linsley, R.K. (1951). Predicting the runoff from storm rainfall. US Department of Commerce. Weather Bureau, Washington, DC, U.S.
- Lee, G.-H., Oh, S.-R., Lee, D.-U., and Jung, K.-S. (2012). "Analysis on Mt. Umyeon landslide using infinite slope stability model." Korea Water Resources Association, Vol. 5, pp. 737-741.
- Li, C., Ma, T., Zhu, X., and Li, W. (2011). "The power-law relationship between landslide occurrence and rainfall level." Geomorphology, Vol. 130, No. 3/4, pp. 221-229. https://doi.org/10.1016/j.geomorph.2011.03.018
- Ma, T., Li, C., Lu, Z., and Wang, B. (2014). "An effective antecedent precipitation model derived from the power-law relationship between landslide occurrence and rainfall level." Geomorphology, Vol. 216, pp. 187-192. https://doi.org/10.1016/j.geomorph.2014.03.033
- Marino, P., Peres, D.J., Cancelliere, A., Greco, R., and Bogaard, T.A. (2020). "Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach." Landslides, Vol. 17, No. 9.
- Oh, S.-R., and Lee, G.-H. (2014). "Slope stability analysis at catchment scale using spatially-distributed wetness index." Association of Korean Geographers, Vol. 3, No. 2, pp. 111-126. https://doi.org/10.25202/JAKG.3.2.3
- Pradhan, A.M.S., Kang, H.-S., Lee, J.-S., and Kim, Y.-T. (2019a). "An ensemble landslide hazard model incorporating rainfall threshold for Mt. Umyeon, South Korea." Bulletin of Engineering Geology and the Environment, Vol. 78, No. 1, pp. 131-146. https://doi.org/10.1007/s10064-017-1055-y
- Pradhan, A.M.S., Lee, S.-R., and Kim, Y.-T. (2019b). "A shallow slide prediction model combining rainfall threshold warnings and shallow slide susceptibility in Busan, Korea." Landslides, Vol. 16, No. 3, pp. 647-659. https://doi.org/10.1007/s10346-018-1112-z
- Rahimi, A., Rahardjo, H., and Leong, E.-C. (2011). "Effect of antecedent rainfall patterns on rainfall-induced slope failure." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 137, No. 5, pp. 483-491. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000451
- Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., and Bosilovich, M. (2004). "The global land data assimilation system." Bulletin of the American Meteorological Society, Vol. 85, No. 3, pp. 381-394. https://doi.org/10.1175/BAMS-85-3-381
- Saito, H., Nakayama, D., and Matsuyama, H. (2010). "Relationship between the initiation of a shallow landslide and rainfall intensity-duration thresholds in Japan." Geomorphology, Vol. 118, No. 1/2, pp. 167-175. https://doi.org/10.1016/j.geomorph.2009.12.016
- Schulz, W.H., McKenna, J.P., Kibler, J.D., and Biavati, G. (2009). "Relations between hydrology and velocity of a continuously moving landslide-evidence of pore-pressure feedback regulating landslide motion?." Landslides, Vol. 6, No. 3, pp. 181-190. https://doi.org/10.1007/s10346-009-0157-4
- Segoni, S., Piciullo, L., and Gariano, S.L. (2018). "A review of the recent literature on rainfall thresholds for landslide occurrence." Landslides, Vol. 15, No. 8, pp. 1483-1501. https://doi.org/10.1007/s10346-018-0966-4
- Sun, H.Y., Wu, X., Wang, D.F., Liang, X., and Shang, Y.Q. (2019). "Analysis of deformation mechanism of landslide in complex geological conditions." Bulletin of Engineering Geology and the Environment, Vol. 78, No. 6, pp. 4311-4323. https://doi.org/10.1007/s10064-018-1406-3
- Thomas, M.A., Collins, B.D., and Mirus, B.B. (2019). "Assessing the feasibility of satellite-based thresholds for hydrologically driven landsliding." Water Resources Research, Vol. 55, No. 11, pp. 9006-9023. https://doi.org/10.1029/2019wr025577
- Western, A.W., Grayson, R.B., and Bloschl, G. (2002). "Scaling of soil moisture: A hydrologic perspective." Annual Review of Earth and Planetary Sciences, Vol. 30, No. 1, pp. 149-180. https://doi.org/10.1146/annurev.earth.30.091201.140434
- Wicki, A., Lehmann, P., Hauck, C., Seneviratne, S.I., Waldner, P., and Stahli, M. (2020). "Assessing the potential of soil moisture measurements for regional landslide early warning." Landslides, Vol. 17, No. 8, pp. 1881-1896. https://doi.org/10.1007/s10346-020-01400-y