과제정보
본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(과제번호 21DPIW -C153746-03).
참고문헌
- Asner, G.P., and Martin, R.E. (2009). "Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests." Frontiers in Ecology and the Environment, Vol. 7, No. 5, pp. 269-276. https://doi.org/10.1890/070152
- Clark, R.N., Swayze, G.A., Wise, R.A., Livo, K.E., Hoefen, T.M., Kokaly, R.F., and Sutley, S.J. (2007). USGS digital spectral library splib06a (No. 231). US Geological Survey, Reston, VA, U.S.
- Drake, N.A., Mackin, S., and Settle, J.J. (1999). "Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery." Remote Sensing of Environment, Vol. 68, No. 1, pp. 12-25. https://doi.org/10.1016/S0034-4257(98)00097-2
- Goetz, A.F. (2009). "Three decades of hyperspectral remote sensing of the Earth: A personal view." Remote Sensing of Environment, Vol. 113, pp. S5-S16. https://doi.org/10.1016/j.rse.2007.12.014
- Ishida, T., Kurihara, J., Viray, F.A., Namuco, S.B., Paringit, E.C., Perez, G.J., Takahashi, Y., and Marciano Jr, J.J. (2018). "A novel approach for vegetation classification using UAV-based hyperspectral imaging." Computers and Electronics in Agriculture, Vol. 144, pp. 80-85. https://doi.org/10.1016/j.compag.2017.11.027
- Jeong, J., and Youn, H., (2020). "Region of Interest (ROI) selection of land cover using SVM cross validation." Journal of Cadastre and Land InformatiX, Vol. 50, No. 1, pp. 75-85. https://doi.org/10.22640/LXSIRI.2020.50.1.75
- Kang, J., Lee, C., Kim, J., Ko, D., and Kim, J. (2019). "An analysis of spectral characteristic information on the water level changes and bed materials." Ecology and Resilient Infrastructure, Vol. 6, No. 4, pp. 243-249. https://doi.org/10.17820/eri.2019.6.4.243
- Kokaly, R.F., Asner, G.P., Ollinger, S.V., Martin, M.E., and Wessman, C.A. (2009). "Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies." Remote Sensing of Environment, Vol. 113, pp. S78-S91. https://doi.org/10.1016/j.rse.2008.10.018
- Kwon, S., Seo, I. W., and Baek, D. (2021). "Development of suspended solid concentration measurement technique based on multi-spectral satellite imagery in Nakdong River using machine learning model." Journal of Korea Water Resources Association, Vol. 54, No. 2, pp. 121-133. https://doi.org/10.3741/JKWRA.2021.54.2.121
- Legleiter, C.J., and Harrison, L.R. (2019). "Remote sensing of river bathymetry: Evaluating a range of sensors, platforms, and algorithms on the upper Sacramento River, California, USA." Water Resources Research, Vol. 55, No. 3, pp. 2142-2169. https://doi.org/10.1029/2018wr023586
- Marcus, W.A., and Fonstad, M.A. (2010). "Remote sensing of rivers: The emergence of a subdiscipline in the river sciences." Earth Surface Processes and Landforms, Vol. 35, No. 15, pp. 1867-1872. https://doi.org/10.1002/esp.2094
- Mather, P., and Tso, B. (2016). Classification methods for remotely sensed data. CRC press, Boca Ranton, FL, U.S.
- Pal, M., and Mather, P.M. (2006). "Some issues in the classification of DAIS hyperspectral data." International Journal of Remote Sensing, Vol. 27, No. 14, pp. 2895-2916. https://doi.org/10.1080/01431160500185227
- Peterson, D.L., Aber, J.D., Matson, P.A., Card, D.H., Swanberg, N.A., Wessman, C.A., and Spanner, M.A. (1988). "Remote sensing of forest canopy and leaf biochemical contents." Remote Sensing of Environment, Vol. 24, pp. 85-108. https://doi.org/10.1016/0034-4257(88)90007-7
- Schmid, T., Koch, M., Gumuzzio, J., and Mather, P.M. (2004). "A spectral library for a semi-arid wetland and its application to studies of wetland degradation using hyperspectral and multi-spectral data." International Journal of Remote Sensing, Vol. 25, No. 13, pp. 2485-2496. https://doi.org/10.1080/0143116031000117001
- Stratoulias, D., Balzter, H., Zlinszky, A., and Toth, V.R. (2015). "Assessment of ecophysiology of lake shore reed vegetation based on chlorophyll fluorescence, field spectroscopy and hyperspectral airborne imagery." Remote Sensing of Environment, Vol. 157, pp. 72-84. https://doi.org/10.1016/j.rse.2014.05.021
- Umar, M., Rhoads, B.L., and Greenberg, J.A. (2018). "Use of multi-spectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences." Journal of Hydrology, Vol. 556, pp. 325-338. https://doi.org/10.1016/j.jhydrol.2017.11.026
- Van der Meer, F.D., Van der Werff, H.M., Van Ruitenbeek, F.J., Hecker, C.A., Bakker, W.H., Noomen, M.F., Van der Meijde, M., Carranza, E.J., Boudewijn, J., and Woldai, T. (2012). "Multi-and hyperspectral geologic remote sensing: A review." International Journal of Applied Earth Observation and Geoinformation, Vol. 14, No. 1, pp. 112-128. https://doi.org/10.1016/j.jag.2011.08.002
- Vapnik, V., Golowich, S.E., and Smola, A., 1997. "Support vector method for function approximation, regression estimation, and signal processing." Advances in Neural Information Processing Systems 9: Proceedings of the 1996 Conference. The MIT Press, Cambridge, MA, U.S., pp. 281-287.