References
- W. Hundsdorfer and J.G. Verwer: Numerical solution of time-dependent advection-diffusion-reaction equations-springer series in computational mathematics. Springer 33 (2003), 386-387.
- S.J. Ruuth: Implicit-explicit methods for reaction-diffusion problems in pattern formation. Journal of Mathematical Biology 34 (1995), 148-176. https://doi.org/10.1007/BF00178771
- J.G. Verwer, J.G. Blom and W. Hundsdorfer: An implicit-explicit approach for atmospheric transport-chemistry problems. Appl Numer Math 20 (1996), 191-209. https://doi.org/10.1016/0168-9274(95)00126-3
- J.R. Cash: Split linear multistep Methods for the numerical Integration of Stiff Differential System. Numer Math 42 (1983), 299-310. https://doi.org/10.1007/BF01389575
- M. Crouzeix: Une methode multipas implicite-explicite pour l'approximation des equations d'evolution paraboliques. Numer Math 35 (1980), 257-276. https://doi.org/10.1007/BF01396412
- J.M. Varah: Stability restriction on second order, three-level finite-difference schemes for parabolic equations. SIAM J Numer Anal 17 (1980), 300-309. https://doi.org/10.1137/0717025
- G. Akrivis and Y. Smyrlis: Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation. Appl Numer Math 51 (2004), 151-169. https://doi.org/10.1016/j.apnum.2004.03.002
- U.M. Ascher, S.J. Ruuth and B.T.R. Wetton: Implicit-explicit methods for time-dependent partial differential equations. SIAM J Numer Anal 32 (1995), 797-823. https://doi.org/10.1137/0732037
- J. Frank, W. Hundsdorfer, J. Verwer: On the stability of implicit-explicit linear multistep methods. Appl Numer. Math. 25 (1997), 193-205. https://doi.org/10.1016/S0168-9274(97)00059-7
- S.E. Ogunfeyitimi: Implicit-explicit second derivative linear multi-step methods for stiff ordinary differential equations. Master thesis, University of Benin, Benin, Nigeria (2016).
- S.E. Ogunfeyitimi and M.N.O. Ikhile: Implicit-explicit methods based on recursively derived second derivative LMM. J. Nigerian assoc of maths phys 38 (2016), 57-66.
- K.M. Owolabi and K.C. Patidar: Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology. J Appl Math and Comp 240 (2014), 30-50. https://doi.org/10.1016/j.amc.2014.04.055
- W. Hundsdorfer and J.G. Verwer: A note on splitting errors for advection-reaction equations. Appl Num Math 18 (1995), 191-199. https://doi.org/10.1016/0168-9274(95)00069-7
- W. Hundsdorfer and S.J. Ruuth: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J Comput Phys 225 (2007), 2016-2042. https://doi.org/10.1016/j.jcp.2007.03.003
- U.M. Ascher, S.J. Ruuth and R.J. Spiteri: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl Numer Math 25 (1997), 151-167. https://doi.org/10.1016/S0168-9274(97)00056-1
- M.P. Calvo, Jde.Frutos and J. Novo: Linearly implicit Runge-Kutta methods for advection-diffusion-reaction problems. Appl Numer Math 37 (2001), 535-549. https://doi.org/10.1016/S0168-9274(00)00061-1
- C.A. Kennedy and M.H. Carpenter: Additive Runge-Kutta schemes for convection-diffiusion-reaction equations. Appl Numer Math 44 (2003), 139-181. https://doi.org/10.1016/S0168-9274(02)00138-1
- L. Pareschi and G. Russo: Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. In: Recent trends in numerical analysis. Adv Theory Comput Math 3 (2001), 269-288.
- L. Pareschi and G. Russo: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J Sci Comput 25 (2005), 129-155. https://doi.org/10.1007/BF02728986
- X. Zhong: Additive semi-implicit Runge-Kutta methods for computing high-speed non equilibrium reactive flows. J Compo Phys 128 (1996), 19-31. https://doi.org/10.1006/jcph.1996.0193
- G. Izzo and Z. Jackiewicz: Highly stable implicit-explicit Runge-Kutta methods. Appl Numer Math 113 (2017), 71-92. https://doi.org/10.1016/j.apnum.2016.10.018
- O. Knoth and R. Wolke: Implicit-explicit Runge-Kutta methods for computing atmospheric reactive flows. Appl Numer Math 28 (1998), 327-341. https://doi.org/10.1016/S0168-9274(98)00051-8
- H. Zhang and A. Sandu: A second-order diagonally-implicit-explicit multistage integration method. Procedia CS 9 (2012), 1039--1046.
- E. Zharovski and A. Sandu: A class of implicit-explicit two-step Runge-Kutta methods. Tech. Rep. TR-12-08, Computer Science, Virginia.(2012)
- A. Cardone, Z. Jackiewicz, A. Sandu and H. Zhang: Extrapolation based implicit-explicit general linear methods. Numer Algorithms 65 (2014), 377-399. https://doi.org/10.1007/s11075-013-9759-y
- H. Zhang and A. Sandu: Partitioned and implicit-explicit general linear methods for ordinary differential equations. (2013) http://arxiv.org/abs/1302.2689.
- M. Bras, G. Izzo and Z. Jackiewicz: Accurate implicit-explicit general linear methods with inherent Runge-Kutta stability. J Sci Comput 70 (2017), 1105-1143. https://doi.org/10.1007/s10915-016-0273-y
- H. Zhang, A. Sandua and S. Blaise: High order implicit-explicit general linear methods with optimized stability regions. SIAM J Sci Comput 38 (2016), A1430-A1453. https://doi.org/10.1137/15M1018897
- M. Schneider, J. Lang and W. Hundsdorfer: Extrapolation-based super convergent implicit-explicit Peer methods with A-stable implicit part. J Comp Phys 367 (2018), 121-133. https://doi.org/10.1016/j.jcp.2018.04.006
- B. Soleimani and R. Weiner: Super-convergent IMEX Peer methods. Appl Numer Math 130 (2018), 70-85. https://doi.org/10.1016/j.apnum.2018.03.014
- M. Schneider, J. Lang, R. Weiner, Super-Convergent Implicit-Explicit Peer Methods with Variable Step Sizes. J Comput Appl Math.(2019) doi:10.1016/j.cam.2019.112501
- S.E. Ogunfeyitimi and M.N.O. Ikhile: Second derivative generalized extended backward differentiation formulas for stiff problems. J Korean Soc Ind Appl Math 23 (2019), 179-202. Doi.org/10.12941/jksiam.2019.23.179
- S.E. Ogunfeyitimi and M.N.O. Ikhile: Multi-block boundary value methods for ordinary differential and differential algebraic equation. J Korean Soc Ind Appl Math 24 (2020), 243-291. https://doi.org/10.12941/jksiam.2020.24.243
- S.E. Ogunfeyitimi and M.N.O. Ikhile: Multi-block Generalized Adams-Type Integration Methods for Differential Algebraic Equations. Int. J. Appl. Comput. Math 7, 197 (2021). https://doi.org/10.1007/s40819-021-01135-x
- S.E Ogunfeyitimi and M.N.O Ikhile: Generalized second derivative linear multistep methods based on the methods of Enright. Int. J. Appl. and Comput. Math 6, 76 (2020). https://doi.org/10.1007/s40819-020-00827-0
- P.O. Olatunji and M.N.O Ikhile: Strongly regular general linear methods J. Sci. Comp. 82, 7 (2020), 1-30. Doi.org/10.1007/s10915-019-01107-w
- P.O. Olatunji, M.N.O Ikhile and R.I Okuonghae: Nested second derivative to-ste Runge-Kutta methods. Int. J. Appl. Comput. Math 7, 249 (2021). https://doi.org/10.1007/s40819-021-0119-1
- A. Prothero and Robinson A: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math Comp 28 (1974), 145-162. https://doi.org/10.1090/S0025-5718-1974-0331793-2
- C.F. Curtiss and J.O. Hirschfelder: Integration of stiff equations, Proceeding of the National Academy of Sciences. 38 (1952), 235-243. https://doi.org/10.1073/pnas.38.3.235
- S.O. Fatunla: Numerical methods for initial value problems in ordinary differential equations. Academic Press Inc New York. (1988)
- J.D. Lambert : Computational methods in ordinary differential equations Wiley, New York, 1973.
- E. Hairer and G. Wanner: Solving ordinary differential equation II: stiff and differential-algebraic problems. 2nd rev. ed., Springer-Verlag, New York.(1996)
- Z. Jackiewicz: General linear method for ordinary differential equations. John Wiley and Sons, Inc, Hoboken, New Jersey.(2009)
- D.J. Higham and L.N Trefethen: Stiffness of ODEs. BIT Numer Math 33 (1993), 285-303. https://doi.org/10.1007/BF01989751
- G. Dahlquist: Convergence and stability in the numerical integration of ordinary differential equations. Math Scand 4 (1956), 33-53. https://doi.org/10.7146/math.scand.a-10454
- W.H. Enright: Second derivative multistep methods for stiff ordinary differential equations. SIAM J Numer Anal 11 (1974), 321-331. https://doi.org/10.1137/0711029
- J.R. Cash: Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM J Numer Anal 18 (1981), 21-36. https://doi.org/10.1137/0718003
- A.D. Jorgenson, Unconditional stability of a Crank-Nicolson Adam-Bashforth2 implicit-explicit numerical method. Inter. J Numer Analysis and Modeling Series B 5 (2014), 171-187.
- K. Gustasfson, M. Lundh and G.Soderlind: A PI step size control for the numerical solution of ordinary differential equations. BIT 28 (1988), 270-287. https://doi.org/10.1007/BF01934091
- O. Nevanlinna, R. Jeltsch, Stability and accuracy of time discretizations for initial value problems. Numerische Mathematik 40 (1982), 245-296. https://doi.org/10.1007/BF01400542