Acknowledgement
MJ was funded, in part, by the Doctoral Dissertation Fellowship of the Department of Mathematics at the University at Buffalo. JHJ has been supported by Samsung Science & Technology Foundation under grant number SSTF-BA1802-02.
References
- Gunnar Carlsson. Topology and data. Bulletin of The American Mathematical Society, 46:255-308, 04 2009. https://doi.org/10.1090/S0273-0979-09-01249-X
- Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification. Discrete & Computational Geometry, 28(4):511-533, Nov 2002. https://doi.org/10.1007/s00454-002-2885-2
- Mathieu Carriere, Steve Y. Oudot, and Maks Ovsjanikov. Stable topological signatures for points on 3d shapes. ' Computer Graphics Forum, 34(5):1-12, 2015. https://doi.org/10.1111/cgf.12692
- Alex Cole and Gary Shiu. Persistent homology and non-gaussianity. arXiv preprint arXiv:1712.08159, 2017.
- Sven Heydenreich, Benjamin Bruck, and Joachim Harnois-Deraps. Persistent homology in cosmic shear: ' constraining parameters with topological data analysis. arXiv preprint arXiv:2007.13724, 2020.
- X. Xu, J. Cisewski-Kehe, S.B. Green, and D. Nagai. Finding cosmic voids and filament loops using topological data analysis. Astronomy and Computing, 27:34 - 52, 2019. https://doi.org/10.1016/j.ascom.2019.02.003
- Melissa R. McGuirl, Alexandria Volkening, and Bjorn Sandstede. Topological data analysis of zebrafish patterns. Proceedings of the National Academy of Sciences, 117(10):5113-5124, 2020. https://doi.org/10.1073/pnas.1917763117
- John Nicponski and Jae-Hun Jung. Topological data analysis of vascular disease: I a theoretical framework. Frontiers in Applied Mathematics and Statistics, 6:34, 2020. https://doi.org/10.3389/fams.2020.00034
- Paul Bendich, J. S. Marron, Ezra Miller, Alex Pieloch, and Sean Skwerer. Persistent homology analysis of brain artery trees. Ann. Appl. Stat., 10(1):198-218, 03 2016.
- Ann E. Sizemore, Jennifer E. Phillips-Cremins, Robert Ghrist, and Danielle S. Bassett. The importance of the whole: Topological data analysis for the network neuroscientist. Network Neuroscience, 3(3):656-673, 2019. https://doi.org/10.1162/netn_a_00073
- Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: A stable vector representation of persistent homology. Journal of Machine Learning Research, 18(8):1-35, 2017.
- Yuhei Umeda. Time series classification via topological data analysis. Information and Media Technologies, 12:228-239, 2017.
- Yu-Min Chung and Austin Lawson. Persistence curves: A canonical framework for summarizing persistence diagrams. 2020.
- Megan Johnson and Jae-Hun Jung. The interconnectivity vector: A finite-dimensional representation of persistent homology. arXiv preprint arXiv:2011.11579, 2020.
- Bartosz Zielinski, Michal Lipi ' nski, Mateusz Juda, Matthias Zeppelzauer, and Pawel Dlotko. Persistence code-books for topological data analysis. Artificial Intelligence Review, Sep 2020.
- L. N. Vaserstein. Markov processes over denumerable products of spaces, describing large systems of automata. Problems Inform. Transmission, 5(3):47-52, 1969.
- Michael Barnsley. Fractals everywhere. Academic Press Inc., Boston, MA, 1988.