DOI QR코드

DOI QR Code

A Study on the Water Gas Shift Reaction of RPF Syngas

RPF(Refuse plastic fuel) 합성가스의 수성가스 전환 반응 연구

  • Roh, Seon Ah (Environmental Systems Research Division, Korea Institute of Machinery & Materials)
  • 노선아 (한국기계연구원 환경시스템연구본부)
  • Received : 2021.10.05
  • Accepted : 2021.10.19
  • Published : 2021.12.31

Abstract

The water-gas shift reaction is the subsequent step using steam for hydrogen enrichment and H2/CO ratio-controlled syngas from gasification. In this study, a water-gas shift reaction was performed using syngas from an RPF gasification system. The water-gas shift using a catalyst was performed in a laboratory-scale tube reactor with a high temperature shift (HTS) and a low temperature shift (LTS). The effects of the reaction temperature, steam/carbon ratio, and flow rate on H2 production and CO conversion were investigated. The operating temperature was 250-400℃ for the HTS system and 190-220℃ for the LTS system. Steam/carbon ratios were between 1.5 and 3.5, and the composition of reactant was CO : 40 vol%, H2 : 25 vol%, and CO2 : 25 vol%. The CO conversion and H2 production increased as the reaction temperature and steam/carbon ratio increased. The CO conversion and H2 production decreased as the flow rate increased due to reduced retention time in the catalyst bed.

수성가스 전환 반응은 가스화로 생성된 합성 가스에 수소 생산 증가와 H2/CO 비율 제어를 위해 수증기를 첨가하는 가스화 후속 공정이다. 본 연구에서는 RPF(Refuse plastic fuel) 가스화 시스템의 합성가스를 대상으로 수성가스 전환 반응을 연구하였다. 수성가스 전환 반응은 촉매를 이용하여 high temperature shift(HTS) 와 low temperature shift(LTS) 반응에 대하여 lab scale 관형 반응기를 이용하여 반응 온도, steam/carbon ratio, 유량의 변화가 H2 생성과 CO 전환율에 미치는 영향을 조사하였다. 운전 온도는 HTS 시스템이 250-400℃, LTS 시스템이 190-220℃이며 steam/carbon ratio는 1.5-3.5로 변화시켰다. 반응 모의 가스의 농도는 RPF 합성가스의 농도를 기준으로 CO, 40vol%, H2, 25vol%, CO2, 25vol%이다. 반응 온도와 steam/carbon ratio가 증가함에 따라 CO 전환율 및 H2 생성량이 증가하고, 유량이 증가하면 촉매층의 체류시간 단축으로 CO 전환율과 H2 생성량이 감소하였다.

Keywords

Acknowledgement

This research was supported by KIMM Institutional program (NK231F).

References

  1. Geyer, R., Jambeck, J.R., Law, K.L., 2017 : Production, use, and fate of all plastics ever made, Sci. Adv., 3, pp.25-29.
  2. Kim, Y., Lee, S., Ahn, J., 2021 : A Brief review on Global Plastic Regulation Trends (in Korean), KOSEE, 30(1), pp.21-25.
  3. Borrelle, S. B., Ringma, J., Law, K. L., et al., 2020 : Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution, Sci., 369, pp.1515-1518. https://doi.org/10.1126/science.aba3656
  4. Liu, S., Kots, P.A., Vance, B.C., et al., 2021 : Plastic waste to fuels by hydrocracking at mild conditions, Sci. Adv., 7, pp.1-10.
  5. Weiland, F., Lundin, L., Celebi, M., et al., 2021 : Aspects of chemical recycling of complex plastic waste via the gasification route, Waste Manag., 126, pp.65-77. https://doi.org/10.1016/j.wasman.2021.02.054
  6. Chun, Y.N., Lim, M.S., Jo, D.Y., 2015 : Characteristics of Gasif ication f or a Ref used Plastic Fuel, J. Korean Soc. Environ. Eng., 37, pp.636-641. https://doi.org/10.4491/KSEE.2015.37.11.636
  7. Ebrahimi, P., Kumar, A., Khraisheh, M., 2020 : A review of recent advances in water-gas shift catalysis for hydrogen production, Emergent Mater., 3, pp.881-917. https://doi.org/10.1007/s42247-020-00116-y
  8. Park, J.H., Im, H.B., Hwang, R.H., et al., 2017 : Effect of Ce Addition on Catalytic Activity of Cu/Mn Catalysts for Water Gas Shift Reaction, Trans. Korean Hydrog. New Energy Soc., 28, pp.1-8. https://doi.org/10.7316/KHNES.2017.28.1.1
  9. Pal, D.B., Chand, R., Upadhyay, S.N., et al., 2018 : Performance of water gas shift reaction catalysts: A review, Renew, Sustain. Energy Rev., 93, pp.549-565. https://doi.org/10.1016/j.rser.2018.05.003
  10. Ashok, J., Wai, M.H., Kawi, S., 2018 : Nickel-based Catalysts for High-temperature Water Gas Shift Reaction-Methane Suppression, ChemCatChem, 10, pp.3927-3942. https://doi.org/10.1002/cctc.201800031