References
- K. Suh, J. J. Lee, T. G. Kim & H. J. Yi. (2005). System Simulation of Agricultural Marketing Based on GASS. Journal of The Korean Society of Agricultural Engineers, 47(4), 3-12. https://doi.org/10.5389/KSAE.2005.47.4.003
- W. M. Gal, K. T. Kwon, W. S. Lee, E. M. Choi, L. S. Kwon, S. H. Seong & W. T. Kwon. (2018). A Study on Improvement of Distribution Facility in Wholesale Agricultural Products Market. Journal of Distribution Science, 16(2), 53-65. https://doi.org/10.15722/jds.16.2.201802.53
- S. J. Hong & Y. J. Cho. (2014). Prediction Methodology of Damage to Traditional Market from Opening Large-Scale Retailer. Korea Real Estate Academy, 58(August), 45-59.
- H. M. Jang, S. S. Choi & J. H. Ha. (2016). Comparison of single-stage thermophilic and mesophilic anaerobic sewage sludge digestion, Applied Chemistry for Engineering, 27(5), 532-536. https://doi.org/10.14478/ACE.2016.1084
- H. O. Kim, I. G. Lee & S. K. Kwon. (2010). Study on Odorants from Two-Phase Anaerobic Digestion System, Journal of the Korean Society for Environmental Analysis, 13(2), 40-44.
- J. H. Nam, S. W. Kim & D. H. Lee. (2012). Microbial Diversity in Three-Stage Methane Production Process Using Food Waste. Korean Journal of Microbiology, 48(2), 125-133. https://doi.org/10.7845/KJM.2012.48.2.125
- Y. H. Choe. (2020). A study on how to maintain the freshness of agricultural products distribution. The Journal of the Convergence on Culture Technology, 6(3), 377-380. https://doi.org/10.17703/JCCT.2020.6.3.377
- K. H. Lee, Y. J. Yoon, H. W. Kwon, B. Lee & H. G. Kim. (2018). Quality changes of chicken breast meat by slow-released CIO2 gas gel-pack during storage. Korean Food Nutr, 31, 127-134.
- R. Vafashoar & M. R. Meybodi. (2019). Reinforcement learning in learning automata and cellular learning automata via multiple reinforcement signals. Knowledge-Based Systems, 169(1), 1-27. https://doi.org/10.1016/j.knosys.2019.01.021
- K. G. Vamvoudakis, Y. Wan & F. L. Lewis. (2019). Workshop on Distributed Reinforcement Learning and Reinforcement-Learning Games. IEEE Control Systems, 39(6), 122-124. https://doi.org/10.1109/mcs.2019.2938053
- K. T. Aung & T. Fuchida. (2012). A comparison of learning performance in two-dimensional Q-learning by the difference of Q-values alignment. Artificial Life and Robotics, 16(4), 473-477. https://doi.org/10.1007/s10015-011-0961-5
- Y. H. Wang, T. H. S. Li & C. J. Lin. (2013). Backward Q-learning: The combination of Sarsa algorithm and Q-learning. Engineering Applications of Artificial Intelligence, 26(9), 2184-2193. https://doi.org/10.1016/j.engappai.2013.06.016
- K. H. Kwon & H. B. Lee. (2018). Multi Behavior Learning of Lamp Robot based on Q-learning. Journal of Digital Contents Society, 19(1), 35-41. https://doi.org/10.9728/DCS.2018.19.1.35
- Liu, Jun. Zhang, Tong. Han, Guangjie & Gou, Yu. (2018). TD-LSTM: Temporal Dependence-Based LSTM Networks for Marine Temperature Prediction. Sensors (Basel, Switzerland), 18(11), 3797. https://doi.org/10.3390/s18113797
- S. H. Shin, M. K. Lee & S. K. Song. (2018). A Prediction Model for Agricultural Products Price with LSTM Network. The Journal of the Korea Contents Association, 18(11), 416-429. https://doi.org/10.5392/JKCA.2018.18.11.416
- A. Galanis, L. A. Goldberg & K. Yang. (2021). Approximating partition functions of bounded-degree Boolean counting Constraint Satisfaction Problems. Journal of computer and system sciences, 115, 187-213. https://doi.org/10.1016/j.jcss.2020.08.003