DOI QR코드

DOI QR Code

골융합 촉진을 위한 Ti Gr4의 HA 코팅에 대한 물리적 특성과 생체안정성에 대한 융합적 연구

Convergence study of mechanical properties and biocompatability of Ti Gr4 surface coated with HA using plasma spray for ossoeintegration

  • 황갑운 (송원대학교 치위생학과)
  • 투고 : 2021.09.28
  • 심사 : 2021.12.20
  • 발행 : 2021.12.28

초록

Ti Gr4에 TPS 법을 이용하여 HA 코팅을 수행하여 코팅층에 대한 물리적특성 및 생체적합성을 판단하여 의료용 부품으로서의 활용성에 대한 평가를 하였다. 직경 25mm Ti Gr4 합금 시험편을 기계가공 후 #120, #400, #1,000 샌드페이퍼 및 바렐 연마로 표면을 연마를 하여 ASTM F1185-88로 HA 코팅은 한 후 HA 코팅층의 두께, 표면조도, 강도 및 접착력 측정 시험과 세포독성 시험을 하였다. Ti Gr4에 대한 HA 코팅 결정도는 75.51%, Ca/P 비는 1.67의 값을 얻을 수 있었다. HA 코팅층의 두께는 Ti 소재의 표면거칠기가 거칠수록 증가하고, 코팅의 강도 및 접착력은 시험장치의 지그 형상, 에폭시 성분, 크로스헤드 속도 등에 따라 변화가 있을 것으로 예측된다. 세포독성 시험은 Grade 3의 반응성으로 적합한 것으로 나타났다. 본 실험 결과 TPS에 의한 Ti Gr4 소재의 HA 코팅 두께 향상과 골융합을 촉진이 가능할 것으로 확인되어 인체삽입용으로 상용화가 가능할 것으로 판단된다.

This study aimed to investigate the efficient conduct of HA coating on Ti Gr4 for the practical use of medical device. Ti Gr4 alloy specimens measuring 𝜱 25mm × 1mm were sprayed with hydroxyapatite using thermal spray according to ASTM F1185-88. The surface was evaluated at #120, #400, #1,000 sandpaper and barrel finishing. Each coating properties was analyzed using SEM, UTS 20,000psi cap. and in vitro cytotoxicity. Surface morphology consists of well molten particles with very little resolidified or unmolten areas. The average Ca/P ratio is 1.74 which is in good agreement with theoretical value of 1.67. The average roughness Ra is very representative of roughness of specimen. The coatings are dense and well adhered to the substrate. The average bond strength was 61.74 MPa with a standard deviation of 4.06 which indicates fairly reliable results for ASTM 633 type tests. Variations in results from jig design, epoxy used, crosshead speeds etc. in vitro cytotoxicity result had a Grade 3. The results of the study are expected to be helpful in osseointegration and plasma-spray HA coated Ti Gr4 are more satisfactory in HA coating thickness elevation which is preferable to any other system.

키워드

과제정보

This study was supported by research fund from Songwon University 2021.(A2021-16).

참고문헌

  1. S. L. Wheeler. (1996). Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int. J. Oral Maxillofacial Implants, 11(3), 340-350.
  2. D. Deporter, R. Todescan & N. Tiley. (2002). Porous-surfaced implants in the partially edentulous maxilla: assessment for sunclinical mobility. Int. J. Periodontics Restorative Dent., 22(2), 184-192.
  3. H. F. Morris S. Ochi & J. W. Olson. (2000). Periodontal-type measurements associated with hydroxyapatite-coated and non-HA-coated implants: uncovering to 36 months. Ann Periodontol, 5(1), 56-67. https://doi.org/10.1902/annals.2000.5.1.56
  4. P. T. Proussaefs, D. N. Takakis, J. Lozada, N. Caplanis & M. D. Rohre. (2000). Histologic evaluation of hydroxyapatite-coated root-form implant retrieved after 7 years in function: a case report. Int J Oral Maxillofac Implants, 15(3), 438-443.
  5. P. Trisi, D. J. Keith & S. Rocco. (2005). Human histologic and histomorphometric analyses of hydroxyapatite-coated implants after 10 years of function: a case report. Int J Oral Maxillofac Implants, 20(1), 124-130.
  6. Z. Artzi, G. Carmeli & A. Kozlovski. (2006). A distinguishable observation between survival and success rate outcome of hydroxyapatite-coated implants. Clin Oral Implants Res., 17(1), 85-93. https://doi.org/10.1111/j.1600-0501.2005.01178.x
  7. S. Ochi, H. F. Morris & S. Winkler. (1994). The influence of implant type, material, coating, diameter, and length on periotest values at second stage surgery: DICRG interim report no. 4. Dental Implant Clinical Research Group. Implant Dent., 3(3), 159-162. https://doi.org/10.1097/00008505-199409000-00003
  8. K. Soballe, E. S. Hansen, H. Brockstedt-Rasmussen & C. Bunger. (1993). Hydroxyapatite coating converts fibrous tissues to bone around loaded implants. J Bone Joint Surg Br., 75(2), 270-278.
  9. D. Schwartz-Arad, O. Mardinger, L. Levin, A. Kozlovsky & A. Hirshberg. (2005). Marginal bone loss pattern around hydroxyapatite-coated versus commercially pure titanium implants after up to 12 years of follow-up. Int J Oral Maxillofac Implants, 20(2), 238-244.
  10. H. F. Morris & S. Ochi (1998). Hydroxyapatite-coated implants: a case for their use. J Oral Maxillofac Surg, 56(11), 1303-1311. https://doi.org/10.1016/S0278-2391(98)90615-2
  11. J. J. Lee, L. Rouhfar & O. R. Beirne. (2000). Survival of hydroxyapatite-coated implants: a meta-analytic review. J Oral Maxillofac Surg, 58(12), 1372-1379. https://doi.org/10.1053/joms.2000.18269
  12. E. A. McGlumphy, L. J. Peterson, P. E. Larsen & M. K. Jeffcoat. (2003). Prospective study of 429 hydroxyapatite-coated cylindric omniloc implants placed in 121 patients. Int J Oral Maxillofac Implants, 18(1), 82-92.
  13. P. Proussaefs, J. Lozada & M. Ojano. (2001). Histologic evaluation of threaded HA-coated root-form implants after 3.5 to 11 years of function: a report of three cases. Int J Periodontics Restorative Dent, 21(1), 21-29.
  14. K. A. Conner, R. Sabatini, B. L. Mealey, V. J. Takacs, M. P. Mills & D. L. Cochran. (2003). Guided bone regeneration around titanium plasma-sprayed, acid-etched, and hydroxyapatite-coated implants in the canine model. J Periodnto, 74(5), 658-668. https://doi.org/10.1902/jop.2003.74.5.658
  15. G. Stellino & L. Lande. (2002). A 6-year unloaded hydroxyapatite-coated dental implant placed into an extraction socket in conjunction with nonresorbable hydroxyapatite grafting material: hostologic evaluation. Int J Periodontics Restorative Dent, 22(6), 575-581.
  16. R. I. M. Asri, W. S. W. Harun, M. A. Hassan, S. A. C. Ghani & Z. Buyong. (2016). A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals. J Mech Behav Biomed Mater, 57, 95-108. https://doi.org/10.1016/j.jmbbm.2015.11.031
  17. M. Lukaszewska-Kuska, P. Krawczyk, A. Martyla, W. Hedzelek & B. Dorocka-Bobkowska. (2018) Hydroxyapatite coating on titanium endosseous implants for improved osseointegration: Physical and chemical considerations. Adv Clin Exp Med., 27(8), 1055-1059. https://doi.org/10.17219/acem/69084
  18. C. H. Fang et al. (2019). Biomimetic Synthesis of Nanocrystalline Hydroxyapatite Composites: Therapeutic Potential and Effects on Bone Regeneration. Int J Mol Sci., v.20(23), 6002-6007. DOI : 10.3390/ijms20236002
  19. E. Ambrozewicz, M. Muszynska, G. Tokajuk, G. Grynkiewicz, N. Zarkovic & E. Skrzydlewska. (2019). Beneficial Effects of Vitamins K and D3 on Redox Balance of Human Osteoblasts Cultured with Hydroxyapatite-Based Biomaterials. Cells, Apr; 8(4), 325-330. DOI : 10.3390/cells8040325
  20. D. Arcos & M. Vallet-Regi. (2020). Substituted hydroxyapatite coatings of bone implants. Journal of Materials Chemistry B, 8(9), 1781-1800. DOI : 10.1039/c9tb02710f