참고문헌
- National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation, 106(25), 3143-3421. DOI : 10.1161/circ.106.25.3143.
- Grundy, S. M., Cleeman, J. I., Daniels, S. R., Donato, K. A., Eckel, R. H., Franklin, B. A., ... & Costa, F. (2005). Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation, 112(17), 2735-2752. DOI : 10.1161/CIRCULATIONAHA.105.169404
- Grundy, S. M. (2007). Metabolic syndrome: a multiplex cardiovascular risk factor. The Journal of Clinical Endocrinology & Metabolism, 92(2), 399-404. DOI : 10.1210/jc.2006-0513
- Huh, J. H., Kang, D. R., Kim, J. Y., & Koh, K. K. (2021). Metabolic Syndrome Fact Sheet 2021: Executive Report. CardioMetabolic Syndrome Journal, 1. DOI : 10.51789/cmsj.2021.1.e15
- Shin, S., & Lee, S. (2019). Association between total diet quality and metabolic syndrome incidence risk in a prospective cohort of Korean adults. Clinical nutrition research, 8(1), 46-54. DOI : 10.7762/cnr.2019.8.1.46
- Grundy, S. M. (2008). Metabolic syndrome pandemic. Arteriosclerosis, thrombosis, and vascular biology, 28(4), 629-636. DOI : 10.1161/ATVBAHA.107.151092
- Bang, S. Y. (2019). The relations between metabolic syndrome, physical activity, and dietary patterns in Korean adults. Journal of the Korea Academia-Industrial cooperation Society, 20(2), 662-672. DOI : 10.5762/KAIS.2019.20.2.662
- Han, M. (2011). Metabolic syndrome emerging from menopause. The Journal of Korean Society of Menopause, 17(3), 127-135. DOI : 10.6118/jksm.2011.17.3.127
- Won JC, Hong JW, Noh JH, Kim DJ(2016) association between age at menarche and risk factors for cardiovascular diseases in Korean women. The 2010 to 2013 Korea National Health and Nutrition Examination Survey. Med (Baltimore) 95(18), 3580-3589. DOI : 10.1097/MD.0000000000003580
- Kang, H. M., & Kim, D. J. (2012). Gender differences in the association of socioeconomic status with metabolic syndrome in middle-aged Koreans. Korean Journal of Medicine, 82(5), 569-575. DOI:10.3904/kjm.2012.82.5.569
- Kim, E., & Oh, S. W. (2012). Gender differences in the association of occupation with metabolic syndrome in Korean adults. The Korean Journal of Obesity, 21(2), 108-114. DOI : 10.7570/kjo.2012.21.2.108
- Seo, J. M., Lim, N. K., Lim, J. Y., & Park, H. Y. (2016). Gender difference in association with socioeconomic status and incidence of metabolic syndrome in Korean adults. The Korean Journal of Obesity, 25(4), 247-254. DOI : 10.7570/kjo.2016.25.4.247
- Oh, S. I., Hwang, Y. S., & Rhyu, M. J. (2013). Effects of a Combined Exercise Program on the Body Composition, Health-related Physical Fitness, and Metabolic Syndrome Risk Factor in Middle-aged Women. The Official Journal of the Korean Academy of Kinesiology, 15(3), 91-100. DOI : 10.15758/jkak.2013.15.3.91
- Kim, A. (2018). Effect of health behaviors, dietary habits, and psychological health on metabolic syndrome in one-person households among Korean young adults. Journal of Digital Convergence, 16(7), 493-509. DOI : 10.14400/JDC.2018.16.7.493
- Lim, M., & Kim, J. (2020). Association between fruit and vegetable consumption and risk of metabolic syndrome determined using the Korean Genome and Epidemiology Study (KoGES). European journal of nutrition, 59(4), 1667-1678. DOI : 10.1007/s00394-019-02021-5
- Yang, H., Kim, H., Kim, J. M., Chung, H. W., & Chang, N. (2016). Associations of dietary intake and metabolic syndrome risk parameters in Vietnamese female marriage immigrants in South Korea: The KoGES follow-up study. Nutrition research and practice, 10(3), 313-320. DOI : 10.4162/nrp.2016.10.3.313
- Kim, D. I., Kim, J. Y., Lee, M. K., Lee, H. D., Lee, J. W., & Jeon, J. Y. (2012). The relationship between fitness, BMI and risk factors of metabolic syndrome among university students in Korea. The Korean Journal of Obesity, 21(2), 99-107. DOI : 10.7570/kjo.2012.21.2.99
- Kim, J., Yoon, D. W., Lee, S. K., Lee, S., Choi, K. M., Robert, T. J., & Shin, C. (2017). Concurrent presence of inflammation and obstructive sleep apnea exacerbates the risk of metabolic syndrome: a KoGES 6-year follow-up study. Medicine, 96(7). DOI : 10.1097/MD.0000000000004488
- Cho, J., Yoon, E., & Park, S. H. (2019). Association of relative handgrip strength with the incidence of metabolic syndrome in korean adults: a community based cohort study. Exercise Science, 28(3), 303-310. DOI : 10.15857/ksep.2019.28.3.303
- Choe, E. K., Rhee, H., Lee, S., Shin, E., Oh, S. W., Lee, J. E., & Choi, S. H. (2018). Metabolic syndrome prediction using machine learning models with genetic and clinical information from a nonobese healthy population. Genomics & informatics, 16(4). DOI : 10.5808/GI.2018.16.4.e31
- Korea Centers for Disease Control and Prevention. (2020). Guideline for raw data use of The Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII), 2016-2018.
- Expert Panel on Detection, E. (2001). Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). Jama, 285(19), 2486-2497. DOI : 10.1001/jama.285.19.2486
- Yoon, Y. S., & Oh, S. W. (2014). Optimal waist circumference cutoff values for the diagnosis of abdominal obesity in Korean adults. Endocrinology and Metabolism, 29(4), 418-426. DOI : 10.3803/EnM.2014.29.4.418
- Yang, Y. H., Kim, J. S., & Jeong, S. H. (2020). Prediction of dental caries in 12-year-old children using machine-learning algorithms. Journal of Korean Academy of Oral Health, 44(1), 55-63. DOI : 10.11149/jkaoh.2020.44.1.55
- Seul, M. S. (2016). Current Status and Future Developments of Machine Learning Artificial Intelligence in Law Focusing the Cusp of Machine Learning in US and Discourses over Legal Profession and Law School Education. The Justice, 156, 269-302.
- Cho, S. Y., Kim, S. H., Kang, S. H., Lee, K. J., Choi, D., Kang, S., ... & Chae, I. H. (2021). Pre-existing and machine learning-based models for cardiovascular risk prediction. Scientific reports, 11(1), 1-10. DOI : 10.1038/s41598-021-88257-w
- Lee, B. J. (2019). Prediction model of hypercholesterolemia using body fat mass based on machine learning. The Journal of the Convergence on Culture Technology, 5(4), 413-420. DOI : 10.17703/JCCT.2019.5.4.413
- Park, J. H., Cho, H. E., Kim, J. H., Wall, M. M., Stern, Y., Lim, H., ... & Cha, J. (2020). Machine learning prediction of incidence of Alzheimer's disease using large-scale administrative health data. NPJ digital medicine, 3(1), 1-7. DOI : 10.1038/s41746-020-0256-0
- Kim, H.-S. (2019). Convergence Analysis of Risk factors for Readmission in Cardiovascular Disease: A Machine Learning Approach. Journal of Convergence for Information Technology, 9(12), 115-123. DOI : 10.22156/CS4SMB.2019.9.12.115
- In-Ja, L., & Junho, L. (2020). Predictive of Osteoporosis by Tree-based Machine Learning Model in Post-menopause Woman. Journal of Radiological Science and Technology, 43(6), 495-502. DOI : 10.17946/JRST.2020.43.6.495
- Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B (Methodological), 20(2), 215-232. DOI : 10.1111/j.2517-6161.1958.tb00292.x
- Lee, S. M., Park, K. D., & Kim, I. K. (2020). Comparison of machine learning algorithms for Chl-a prediction in the middle of Nakdong river (focusing on water quality and quantity factors). Journal of Korean Society of Water and Wastewater, 34(4), 277-288. DOI : 10.11001/jksww.2020.34.4.277
- Jeong, M. C., Lee, J. H., & Oh, H. Y. (2020). Ensemble Machine Learning Model Based Youtube Spam Comment Detection. Journal of the Korea Institute of Information and Communication Engineering, 24(5), 576-583. DOI : 10.3745/KTSDE.2021.10.7.257
- Lim, J. S., & Kim, J. M. (2014). An empirical comparison of machine learning models for classifying emotions in Korean Twitter. Journal of Korea Multimedia Society, 17(2), 232-239. DOI : 10.9717/kmms.2014.17.2.232
- Go, W. S., Yoon, C. G., Rhee, H. P., Hwang, S. J., & Lee, S. W. (2019). A Study on the prediction of BMI (Benthic Macroinvertebrate Index) using Machine Learning Based CFS (Correlation-based Feature Selection) and Random Forest Model. Journal of Korean Society on Water Environment, 35(5), 425-431. DOI : 10.15681/KSWE.2019.35.5.425
- Kim, S. J., & Ahn, H. (2016). Application of random forests to corporate credit rating prediction. The Journal of Business and Economics, 32(1), 187-211. DOI : 10.22793/indinn.2016.32.1.006
- Jung, H., & Kim, J. W. (2017). A machine learning approach for mechanical motor fault diagnosis. Journal of the Society of Korea Industrial and Systems Engineering, 40(1), 57-64. DOI : 10.11627/jkise.2017.40.1.057
- Yi, D. W., Khang, A. R., Lee, H. W., Son, S. M., & Kang, Y. H. (2018). Relative handgrip strength as a marker of metabolic syndrome: the Korea National Health and Nutrition Examination Survey (KNHANES) VI (2014-2015). Diabetes, metabolic syndrome and obesity : targets and therapy, 11, 227-240. DOI : 10.2147/DMSO.S166875
- Kim, M., & Sohn, C. (2016). Analysis of dietary inflammatory index of metabolic syndrome in Korean: data from the health examinee cohort (2012-2014). Korean J Hum Ecol, 25, 823-834. DOI : 10.5934/kjhe.2016.25.6.823
- Oh, G. C., Kang, K. S., Park, C. S., Sung, H. K., Ha, K. H., Kim, H. C., ... & Lee, H. Y. (2018). Metabolic syndrome, not menopause, is a risk factor for hypertension in peri-menopausal women. Clinical hypertension, 24(1), 1-8. DOI : 10.1186/s40885-018-0099-z
- Chang, C. J., Lai, M. M., Lin, C. C., Liu, C. S., Li, T. C., Li, C. I., & Lin, W. Y. (2016). Age at menarche and its association with the metabolic syndrome in Taiwan. Obesity research & clinical practice, 10 Suppl 1, S26-S34. DOI : 10.1016/j.orcp.2015.10.003
- Jeong E. J. & Jung B. M. (2020). Analysis of Anthropometric and Behavioral Factors of Korean Female Adolescents According to Age of Menarche: 2013~2017 Korea National Health and Nutrition Examination Survey. The Korean Journal of Community Living Science, 31(3), 393-409. DOI : 10.7856/kjcls.2020.31.3.393